UNITARY SMALL AIR-CONDITIONERS
AND AIR-SOURCE HEAT PUMPS
(INCLUDES MIXED-MATCH COILS)
(RATED BELOW 65,000 BTU/H)
CERTIFICATION PROGRAM

AHRI USE OM – DECEMBER 2019

Sponsored and administered by:

AHRI
AIR-CONDITIONING, HEATING,
& REFRIGERATION INSTITUTE
we make life better™
PREFACE

The following manual outlines the procedures and policies of the Performance Certification Program for AHRI Unitary Small Air-Conditioners (including mixed-match coils) (USAC) and the AHRI Unitary Small Air-Source Heat Pumps (including mixed-match coils) (USHP) operated by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). This manual is to be used in conjunction with the AHRI General Operations Manual for AHRI Certification Programs. Where the AHRI General Operations Manual and this product-specific manual differ, this product-specific operations manual shall prevail.

The revision of this manual supersedes all previous revisions. The current edition of this manual, as well as the AHRI General Operations Manual, can be accessed through the AHRI website, [www.ahrinet.org](http://www.ahrinet.org).

The USAC and USHP Certification Program by AHRI provides for independent verification of the USAC and USHP manufacturers’ stated equipment performance. Safety criteria are not within the scope of this program.

Participation in the program is voluntary. Any manufacturer, regardless of AHRI membership, may obtain approval of Program Ratings and use of the AHRI USAC and USHP Certification Marks hereinafter referred to as the “Marks”. The Marks are the Participant’s public representation that the ratings of randomly selected units have been verified by an independent laboratory in accordance with test procedures prescribed by this operations manual. A Certification Agreement is executed between the manufacturer and AHRI specifying the conditions under which such Ratings and the Mark may be used. No manufacturer has the right to use Program Ratings or to state that their products have been tested in conformance with the procedures outlined in this Rating Procedure unless and until they have received written authority from AHRI to use the Marks as applied to the specific approved Program Ratings.

This Operations Manual has been prepared to assure that administration of the program is carried out in a uniform manner. It is an amplification of the license agreement signed by licensees and AHRI. General information, procedural details, and copies of forms are included in this Operations Manual. Provisions of the Operations Manual may be amended as provided in the Certification Agreements.

This certification program complies with requirements of the ISO/IEC Standard 17065:2012, *General Requirements for Bodies Operating Product Certification Systems*.

**Note:**

This manual supersedes the AHRI Unitary Small Air-Conditioners (including mixed-match coils) and AHRI Unitary Small Air-Source Heat Pumps (including mixed-match coils) Certification Program Operations Manual, USE OM October 2019.
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Program Overview</td>
<td></td>
</tr>
<tr>
<td>1.1 Applicable Rating Standard</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Product Definitions</td>
<td></td>
</tr>
<tr>
<td>1.2.1 Air-Source Unitary Heat Pump</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2 Independent Coil Manufacturer (ICM)</td>
<td>1</td>
</tr>
<tr>
<td>1.2.3 Indoor Unit</td>
<td>1</td>
</tr>
<tr>
<td>1.2.4 Outdoor Unit</td>
<td>1</td>
</tr>
<tr>
<td>1.2.5 Single Packaged System</td>
<td>1</td>
</tr>
<tr>
<td>1.2.6 Split System</td>
<td>1</td>
</tr>
<tr>
<td>1.2.7 System Manufacturer</td>
<td>1</td>
</tr>
<tr>
<td>1.2.8 Unitary Air-Conditioner</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Program Scopes</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Unitary Small Air-Conditioner (and Mix-Matched Coils) Certification Program (USAC)</td>
<td>1</td>
</tr>
<tr>
<td>1.3.2 Unitary Small Air-Source Heat Pumps (and Mix-Matched Coils) Certification Program (USHP)</td>
<td>1</td>
</tr>
<tr>
<td>1.3.3 Program Distinction</td>
<td>2</td>
</tr>
<tr>
<td>1.3.4 Exceptions</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Intended Market</td>
<td></td>
</tr>
<tr>
<td>1.5 Basic Model Groups (BMGs)</td>
<td></td>
</tr>
<tr>
<td>1.5.1 System Manufacturer BMG Criteria</td>
<td>2</td>
</tr>
<tr>
<td>1.5.2 ICM BMG Criteria</td>
<td></td>
</tr>
<tr>
<td>1.5.2.1 Determination of ICM BMG Coil Capacity Range for Calculating the Number of Tests</td>
<td>2</td>
</tr>
<tr>
<td>1.6 NAECA Compliance</td>
<td>2</td>
</tr>
<tr>
<td>2 Qualification Process</td>
<td></td>
</tr>
<tr>
<td>2.1 Original Equipment Manufacturer (OEM) Applicants</td>
<td>2</td>
</tr>
<tr>
<td>STEP 2.1.1 Certification Application Package</td>
<td>2</td>
</tr>
<tr>
<td>STEP 2.1.2 Processing Application Package</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.2.1 Performance Certification Agreement for Original Equipment Manufacturer (OEM Agreement)</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.2.2 Participation and Licensing Fee Invoice</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.3 Selection and Acquisition of Test Samples</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.3.1 Number of Qualification Tests</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.3.2 Acquisition of Qualification Test Samples/Selection Criteria</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.4 Qualification Testing</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.4.1 Operating Tests</td>
<td>3</td>
</tr>
<tr>
<td>STEP 2.1.4.2 Successful Completion of All Qualification Tests</td>
<td>4</td>
</tr>
<tr>
<td>STEP 2.1.4.3 First Sample Qualification Test Failure</td>
<td>4</td>
</tr>
<tr>
<td>STEP 2.1.4.4 Second Sample Qualification Test Failure</td>
<td>4</td>
</tr>
<tr>
<td>STEP 2.1.5 Welcome to the Program</td>
<td>4</td>
</tr>
</tbody>
</table>
2.2 Private Brand Marketer (PBM) Applicants ........................................... 4
STEP 2.2.1 Certification Application Package ......................................... 4
STEP 2.2.2 Processing Application Package ............................................ 4
    STEP 2.2.2.1 Performance Certification Agreement for Private Brand Marketer (PBM Agreement) ........................................... 4
    STEP 2.2.2.2 OEM Agreement on Behalf of the PBM Applicant ....... 4
    STEP 2.2.2.3 Licensing Fee Invoice .............................................. 4
STEP 2.2.3 Welcome to the Program ................................................... 4
2.3 Minimum Requirements of Test Reports Submitted to AHRI by Participants ........ 5

3 Equipment Selection and Testing
3.1 Annual Testing Requirement ................................................................. 5
    3.1.1 System Manufacturers ........................................................... 5
    3.1.1.1 Basis for System Manufacturer Test Selections .................... 5
    3.1.2 ICM ................................ .............................................. 5
    3.1.2.1 Basis for ICM Test Selections ....................................... 5
    3.1.2.2 Additional ICM Testing ............................................. 5
3.2 Location of Test ................................................................................. 5
    3.2.1 Duties of Third-Party Laboratory Personnel ............................... 5
    3.2.2 LEAP Requirement .................................................................. 6
3.3 Selection of Test Samples ................................................................. 6
    3.3.1 Selection Requirements for Annual Testing .................................. 6
3.4 Methods for Acquiring Test Samples .................................................. 6
    3.4.1 Selecting Three Additional Units ............................................ 6
3.5 Sample Acquisition Timeframe ........................................................... 6
3.6 System Manufacturer’s Required Equipment Provisions ......................... 6
3.7 ICM’s Required Equipment Provisions ................................................. 6
3.8 Break-in Operation of Test Units ....................................................... 7
3.9 Certified Data ................................................................................... 7
    3.9.1 Unitary Small Air-Conditioners (Systems and Mixed-Match Coils), Air-Cooled under 65,000 Btu/h [19,000 W] ........................................... 7
    3.9.2 Unitary Small Air-Conditioners (Systems and Mixed-Match Coils), Water Cooled and Evaporatively Cooled under 65,000 Btu/h [19,000 W] ........................................... 7
    3.9.3 Unitary Small Air-Source Heat Pumps (Systems and Mixed-Match Coils), Air-Cooled under 65,000 Btu/h [19,000 W] ........................................... 7
3.10 Tests, Air-Conditioning (Systems and Mix-Matched Coils) ..................... 7
3.11 Tests, Heat Pumps (Systems and Mix-Matched Coils) ........................... 7
3.12 EER\x Verification Test ...................................................................... 7
3.13 IEER Test ....................................................................................... 7
3.14 Default Factors – Systems ................................................................ 8
3.15 DOE “C” and “D” Tests ................................................................... 8
3.16 High Temperature Heating Cyclic Test ............................................... 8
3.17 Outdoor Unit Qualification for ICM Testing ........................................ 8
    3.17.1 Definitions ............................................................................ 8
        3.17.1.1 Qualified Unit .......................................................... 8
        3.17.1.2 Unqualified Unit ....................................................... 8
        3.17.1.3 Disqualified Unit ...................................................... 8
    3.17.2 Qualified Units Testing ............................................................. 8
    3.17.3 Challenging a Qualified Condenser/Non-Qualified Condenser ........ 8
        3.17.3.1 Non-Qualified Condenser ...................................... 9
    3.17.4 Fees .................................................................................... 9
3.18 Test Failures ................................................................................... 9
    3.18.1 Certified Rating Test Failures – Systems .................................... 9
        3.18.1.1 First Sample Certified Rating Test Failure .................. 9
        3.18.1.2 Option to Save DTC and Remaining BMG Ratings .......... 9
3.18.3 Test Additional Samples Option

3.18.3.1 Following a First Sample Failure

3.18.3.1.1 Statistical Analysis Procedure

3.18.3.1.2 Outlier Determination

3.18.3.1.3 Outlier Determination Procedure

3.18.4 Re-Rate Following Test Additional Sample

3.18.4.1 Re-Rate Following First Additional Test

“Second Sample”

3.19 NAECA and Energy Policy Act (EPACT) Re-rating Requirements

3.20 Test Sample Refrigerant Charge

4 Challenge Tests

4.1 System Manufacturer Challenges

4.2 ICM Challenges

4.2.1 Test the System DTC

4.2.1.1 Acquiring Challenge Units

4.2.1.2 System Challenge Test Pass

4.2.1.3 System Challenge Test Failure

4.2.2 Test the ICM Match

4.2.2.1 ICM Challenge Test Pass

4.2.2.2 ICM Challenge Test Failure

4.3 Test Challenge Fees

4.3.1 Final Outcome System Challenge Test Failure

4.3.2 Final Outcome ICM Challenge Test Failure

4.3.3 Final Outcome ICM Challenge Test Pass

5 AHRI Directory of Certified Product Ratings Data Listings

5.1 Publication of Ratings in Certified Directory

5.2 Data Forms

5.2.1 Making Changes to Submissions

5.3 NAECA Requirements

5.4 Alternate Efficiency Determination Method (AEDM)

5.5 Designation of Designated Tested Combination (DTC)

5.6 ICM Listing Requirements

5.6.1 Heat Pump Listing Requirements

5.7 Identical Coil Ratings

5.8 Listing Equipment with Enhancement Components

5.9 ICM Notice of Revised System DTC and/or Baseline Rating

5.9.1 Test Locked Ratings

5.10 Specific Indoor Coil Data

5.11 Condenser Curve Coefficients

5.12 Rating Screening for ICMs

5.12.1 6% Screen

5.12.1.1 Entering Data Above 6% Screen

5.12.2 Coil Geometry Screening

5.12.3 Internal Refrigerant Volume (IRV) Screening

5.13 DOE Regional Standard Requirements

5.13.1 Air-Conditioner Regional Label Requirement

5.13.2 Condenser Characteristics

5.13.2.1 Regional Standards for Single Line Add/Edits

5.13.2.2 Regional Standards for Mass Upload Add/Edits

5.13.2.3 Regional Efficiency Range

5.14 DOE Test Waivers and Stay Exceptions
Appendices

Appendix A  Requirements for Certification of ICM Heat Pump Ratings ........................................ 23
Appendix B  Condenser Curve Information ................................................................................. 25
Appendix C  Condensing Units for Coil Only Certification ......................................................... 31
Appendix D  Compliance Program Flow Charts ........................................................................ 32
Appendix E  Independent Coil Manufacturer BMG Definitions ................................................ 39
Appendix F  Setup, Commissioning and Operating Checklist for Laboratory Personnel ........... 41
Appendix G  Coil Geometry Screening ....................................................................................... 42
Appendix H  Certification Of Models Rated With International Rating Conditions .................. 46

Tables
Table 1 Designated Tested Combination (DTC) Requirements ..................................................... 18
Table B1 AHRI Submittal Requirements for High or Single Stage ............................................. 25
Table B2 AHRI Submittal Requirements for Low Stage ............................................................ 26
Table B3 DOE HSV Test Data ..................................................................................................... 28
Table B4 Simulation Inputs for High or Single Stage ................................................................. 28
Table B5 Simulation Inputs for Low Stage .................................................................................. 29
Table E1 ICM BMG Definitions .................................................................................................. 39
Table E2 ICM BMG Bucket – Coil Capacity ............................................................................. 40

Figures
Figure B1 Equation Coefficients ............................................................................................... 27
Figure B2 Typical Condenser Capacity Curve ......................................................................... 30
Figure B3 Typical Condenser Power Curves ............................................................................ 30
Figure C1 Use of Unqualified Outdoor Units for ICM Testing .................................................. 31
Figure D1 Selection and Testing Process .................................................................................. 32
Figure D2 System Manufacturer First Test Failure Options ...................................................... 33
Figure D3 ICM First Test Failure Options ................................................................................ 34
Figure D4 ICM Second Sample Test ....................................................................................... 35
Figure D5 Test Additional Samples Process ............................................................................ 36
Figure D6 System Manufacturer Test Additional Samples Failure Options ......................... 37
Figure D7 ICM or System Manufacturer First or Additional Sample Failure Options .......... 38
Figure G1 Part 1 of the ORNL Flowchart .................................................................................. 43
Figure G2 Part 2 of the ORNL Flowchart .................................................................................. 44
Figure G3 Part 3 of the ORNL Flowchart .................................................................................. 45

6 Assessment and Payment of Certification Fees
6.1 Equipment Delivery/Disposal Fees ...................................................................................... 21

7 Issuance of Violations and/or Termination .......................................................................... 22

8 Program Hierarchy, Complaints, and the Appeals Process .................................................... 22

9 Proper Use of the AHRI Certification Mark and Claims to Certification ............................... 22
1. Program Overview


1.2 Product Definitions. All terms in this document shall follow the AHRI General Operations Manual (GOM) and the Standard definitions unless otherwise defined in this section.

1.2.1 Independent Coil Manufacturer (ICM). Any Participant in the program that manufactures only the Indoor Unit in an Air-Source Unitary Heat Pump and/or Unitary Air-Conditioner.

1.2.2 Indoor Unit. A component of a Split System central air-conditioner or heat pump that is designed to transfer heat between refrigerant and heat sink inside the conditioned space.

1.2.3 Outdoor Unit. A component of a Split System central air-conditioner or heat pump that is designed to transfer heat between refrigerant and heat sink outside the conditioned space.

1.2.4 Single Packaged System. Any Unitary Air-Conditioner or Air-Source Unitary Heat Pump that has the means for air circulation and heat removal, air cleaning, and the controls thereof, in the same cabinet.

1.2.5 Split System. Any Unitary Air-Conditioner or Air-Source Unitary Heat Pump that has one or more of the major assemblies separated from the others.

1.2.6 System Manufacturer. Any Participant in the program that manufactures all the major assemblies in an Air-Source Unitary Heat Pump and/or Unitary Air-Conditioner.

1.2.7 Unitary Air-Conditioner. One or more factory-made assemblies which normally include an evaporator or cooling coil(s), compressor(s), and condenser(s). Where such equipment is provided in more than one assembly, the separated assemblies are to be designed to be used together, and the requirements of rating outlined in the Standard are based upon the use of these assemblies in operation together.

1.2.8 Unitary Air-Source Heat Pump. One or more factory-made assemblies which normally include conditioning coil(s), compressors(s), and outdoor coil(s), including means to provide a heating function. When such equipment is provided in more than one assembly, the separated assemblies shall be designed to be used together, and the requirements of rating outlined in the Standard are based upon the use of matched assemblies.

1.3 Program Scopes.

1.3.1 Unitary Small Air-Conditioner (and Mix-Matched Coils) Certification Program (USAC). This program applies to Production Models of 50 and 60 Hz Unitary Air-Conditioners below 65,000 Btu/h cooling, as defined in Section 1.2 and as listed below:

- Unitary Air-Conditioners;
- Single Packaged System;
- Split Systems; and
- Air-conditioning coils (and air-handling products with air-conditioning coils) that an ICM rates as a system with other System Manufacturer’s Outdoor Units.

1.3.2 Unitary Small Air-Source Heat Pump (and Mix-Matched Coils) Certification Program (USHP). This program applies to the Production Models of 50 and 60 Hz Air-Source Unitary Heat Pumps below 65,000 Btu/h cooling, as defined in Section 1.2 and as listed below:
• Unitary Air-Source Heat Pumps;
• Single Packaged System;
• Split Systems; and
• Heat pump coils (and air-handling products with heat pump coils) that an ICM rates as a system with other System Manufacturer’s Outdoor Units.

1.3.3 Program Distinction. The Unitary Small Air-Conditioner (USAC) and the Unitary Small Air-Source Heat Pump (USHP) Certification Program are two separate programs.

1.3.4 Exceptions. Dry charge R-22 production models below 65,000 Btu/h are not within the scope of the certification program in U.S. and Canada.

1.4 Intended Market. The Intended Market for both Certification Programs includes all products defined in Section 1.3 that are sold for use in the U.S. (including U.S. Territories) and Canada.

1.5 Basic Model Groups (BMGs). A Participant’s listing shall be grouped by BMG.

1.5.1 System Manufacturer BMG Criteria. A Split System BMG consists of products with the same Outdoor Unit used with several Indoor Unit combinations (i.e. horizontal, vertical, A-coil, etc.). Same Outdoor Unit refers to models with the same or comparable compressor, used with the same outdoor coil surface area and the same outdoor air quantity.

1.5.1.1 Determination of BMGs for Calculating the Number of Tests (System Manufacturer). When calculating the number of tests for a Participant’s annual testing requirement, AHRI shall take the number of active BMGs at the time of selection. The number of tests shall be reviewed again at a later date to determine if additional tests are required.

1.5.2 ICM BMG Criteria. An ICM BMG consists of coils (Indoor Units) with matching capacity ranges of 6,000 Btu/h and the following identical geometry parameters: air-handler, evaporator fan type, evaporator number of rows, type of equipment (air-cooled, water-cooled or evaporatively-cooled), evaporator tube centers, evaporator fin types, evaporator fins/inch, evaporator tube OD, evaporator expansion device, fin length per slab, fin height per slab, number of slabs in the coil, fin material type, tube material type, and total number of active tubes (refer to Table E1).

1.5.2.1 Determination of ICM BMG Coil Capacity Range for Calculating the Number of Tests. Number of test selections shall be based on a Participant’s total number of 6,000 Btu/h capacity buckets (BMG Buckets) rated in the AHRI Directory of Certified Product Ratings (Directory) as shown on Table E2. For example, if a Participant builds Indoor Units in Btu/h increments from 6,000 to 65,000 Btu/h’s and offers all the variations of Coil Type and AHRI Type, the Participant would have 40 BMG Buckets.

1.6 NAECA Compliance. Only products meeting or exceeding ratings set by the Department of Energy (DOE) in the National Appliance Energy Conservation Act (NAECA) are eligible for certification through the AHRI certification program, where applicable.

2. Qualification Process

2.1 Original Equipment Manufacturer (OEM) Applicants. With the additions noted below, the OEM qualification process shall proceed according to the AHRI General Operations Manual, Section 4.

STEP 2.1.1 Certification Application Package. In addition to the Application for AHRI Certification and Annual Sales Volume Form noted in the AHRI General Operations Manual, Section 4, STEP 4.1, Applicants shall submit the following documentation to AHRI:
• One test report for each BMG (refer to Section 2.3) showing how each rating was developed;
• An Applicant requesting AHRI to submit data to CEC, DOE, FTC, and NRCan shall submit third-party authorization, compliance forms and other necessary information;
• Additional information may be needed to meet EPA ENERGY STAR® program requirements.

STEP 2.1.2 Processing Application Package.

STEP 2.1.2.1 Performance Certification Agreement for Original Equipment Manufacturer (OEM Agreement). No further action required beyond that listed in Section 4, STEP 4.2 of the AHRI General Operations Manual.

STEP 2.1.2.2 Participation and Licensing Fee Invoice. Payment of the Participation and Licensing Fee is due within 30 calendar days of the invoice issue date. Testing shall not be conducted until the invoice is paid in full. No further action required beyond that listed in Section 4, STEP 4.2 of the AHRI General Operations Manual.

STEP 2.1.3 Selection and Acquisition of Test Samples.

STEP 2.1.3.1 Number of Qualification Tests.

• System Manufacturers. 30% of an Applicant’s BMGs shall be tested, with a minimum of two (2) models for the USAC and/or the USHP Certification Programs, as applicable. Fractional numbers shall be rounded to the nearest whole number using traditional rounding methods.

• ICM. 30% of an Applicant’s BMG Buckets (refer to Section 1.5.2.1) shall be tested, with a minimum of two (2) models for the USAC and/or the USHP Certification Programs, as applicable. Fractional numbers shall be rounded up to the nearest whole number. If the Applicant has ratings that were filtered via the Rating Screening for ICMs process (refer to Section 5.12) but still wish to certify them, then there shall be up to an additional three (3) models tested from those filtered models. If a Participant does not have ratings that were filtered out, they are not subject to this additional testing.

STEP 2.1.3.2 Acquisition of Qualification Test Samples/Selection Criteria. Within 30 calendar days of a request from AHRI, the Applicant shall have samples available for selection. Samples shall be acquired in accordance with Section 3.4 of this manual. All samples shall be provided with the equipment listed in Sections 3.6 and 3.7 of this manual.

STEP 2.1.4 Qualification Testing. AHRI shall supply the Independent Third-Party Laboratory Contracted by AHRI (Laboratory) with the Published Ratings. The Laboratory shall conduct the testing of the samples in accordance with the Standard, against the Published Ratings.

STEP 2.1.4.1 Operating Tests. In addition to the tests noted in Section 3.10 or 3.11, the following Operating Tests shall be conducted for all qualification tests:

• Maximum Operating Conditions (MOC);
• Voltage Tolerance (VT);
• Insulation Efficiency;
• Low Temperature Operation; and
• Condensate Disposal.

If any of these units fail any of the Operating Tests, the second sample selected shall pass in order to qualify into the program. If the second sample does not pass, then that model and BMG shall not be entered into the Directory and the Applicant shall cease production and sale of the failed model and BMG in order to qualify into the certification program. A new sample shall be selected and tested to continue the qualification process.

STEP 2.1.4.2 Successful Completion of All Qualification Tests. If all qualification tests pass proceed to STEP 2.1.5.

STEP 2.1.4.3 First Sample Qualification Test Failure. Refer to Section 4, STEP 4.4.2 of the AHRI General Operations Manual for details regarding the first sample qualification failure options.

STEP 2.1.4.4 Second Sample Qualification Test Failure. Refer to Section 4, STEP 4.4.3 of the AHRI General Operations Manual for details regarding the second sample qualification failure options.

STEP 2.1.5 Welcome to the Program. No further action required beyond that listed in Section 4, STEP 4.5 of the AHRI General Operations Manual.

2.2 Private Brand Marketer (PBM) Applicants. With the additions noted below, the PBM qualification process shall proceed according to the AHRI General Operations Manual, Section 5.

PBM Applicants are not required to undergo qualification testing. PBM product certification is contingent upon the certification of the associated OEM product.

STEP 2.2.1 Certification Application Package. In addition to the Application for AHRI Certification Forms noted in the AHRI General Operations Manual, Section 5, STEP 5.1, Applicants shall submit the following documentation to AHRI:

• An Applicant requesting AHRI to submit data to CEC, DOE, FTC, and NRCan shall submit third-party authorization, compliance forms and other necessary information,
• Additional information may be needed to meet EPA ENERGY STAR® program requirements.

STEP 2.2.2 Processing Application Package.

STEP 2.2.2.1 Performance Certification Agreement for Private Brand Marketer (PBM Agreement). No further action required beyond that listed in Section 5, STEP 5.2.1 of the AHRI General Operations Manual.

STEP 2.2.2.2 OEM Agreement on Behalf of the PBM Applicant. No further action required beyond that listed in Section 5, STEP 5.2.2 of the AHRI General Operations Manual.

STEP 2.2.2.3 Licensing Fee Invoice. Payment of the Licensing Fee is due within 30 calendar days of the invoice issue date.

STEP 2.2.3 Welcome to the Program. No further action required beyond that listed in Section 5, STEP 5.3 of the AHRI General Operations Manual.
2.3 **Minimum Requirements of Test Reports Submitted to AHRI by Participants.** The following are minimum requirements that should be included in test reports, as applicable:

- AHRI Reference Number;
- Model Number;
- Test Procedure Name;
- Test Date;
- Sample Number and/or Serial Number;
- Sample description (e.g: number of products listed);
- Test engineer and witness names and signatures;
- Test results organized by applicable test procedure section; and
- Marked to indicate test results are relevant to EPA ENERGY STAR (if applicable)
  - Equipment calibration dates and next due dates and within range/Environmental conditions (e.g: temperature, humidity).

3. **Equipment Selection and Testing**

3.1 **Annual Testing Requirement.**

3.1.1 **System Manufacturers.** 20% of a Participant’s BMGs shall be tested annually, with a minimum of two (2) models for the USAC and/or the USHP Certification Programs, as applicable. Fractional models shall be rounded up to the nearest whole number. The number of tests required of the Participant shall be reviewed by AHRI throughout the year.

3.1.1.1 **Basis for System Manufacturer Test Selections.** The selection of units for test are based on 1/3 at random, 1/3 for cause, and 1/3 Designated Tested Combination (DTC).

3.1.2 **ICM.** 20% of a Participant’s BMG Buckets in the Directory shall be tested annually, with a minimum of two (2) models for the USAC and/or the USHP Certification Programs, as applicable. Fractional numbers shall be rounded up to the nearest whole number.

3.1.2.1 **Basis for ICM Test Selections.** Each model(s) shall be selected from a different BMG selection Bucket (see Table E2).

3.1.2.2 **Additional ICM Testing.** If the Participant has ratings that were filtered via the Rating Screening (Section 5) for ICMs process, but was approved by AHRI to be listed in the Directory, then AHRI shall select up to three (3) additional models from those filtered models for test. If a Participant does not have ratings that were filtered out, they are not subject to this additional testing. The number of tests required of the Participant shall be reviewed by AHRI throughout the year.

3.2 **Location of Test.** Testing shall be performed at the Laboratory and samples shall be installed in the test facility in accordance with the Participant’s published installation instructions.

3.2.1 **Duties of Third-Party Laboratory Personnel.** The Laboratory is responsible for installing and starting the sample per the Participant’s supplied instructions, and testing the sample in accordance with the Standard. The Laboratory shall also set up the sample according to the setup checklist in Appendix F. The Laboratory shall inform the Participant when it intends to test the sample at least two (2) weeks prior to the sample’s installation. The Laboratory shall notify the Participant once the test is about to occur. In the event of a failure, the Laboratory shall notify both AHRI and the Participant immediately after the completion of the test. For items not deserving the manufacturer and/or AHRI’s immediate attention (i.e not affecting the validity and/or the completion of the test) proper communication shall be made via email. For items deserving Participant and/or AHRI’s immediate attention (i.e affecting the validity and/or the completion of the test) proper ways of communication shall be via phone with an email to follow-up.
3.2.2 **LEAP Requirement.** The Laboratory shall perform the Laboratory Evaluation and Adjustment Plan (LEAP) process for each facility that tests USE equipment once every 12 months on a continuous basis (refer to Appendix C of AHRI Standard 210/240).

3.3 **Selection of Test Samples.** Selections shall be made based on active and Production Stopped data contained in the Directory. AHRI shall inform the Participant, in writing, of the sample(s) selected for test.

3.3.1 **Selection Requirements for Annual Testing.** During the selection process, the Participant shall provide at least 50% of their selections, per the selection letter, within 45 calendar days of AHRI’s notification. Within 90 calendar days of AHRI’s notification, 100% of the selections shall be provided. Selections shall be complete systems; the Participant’s shall choose which systems are provided first. The USAC and USHP are separate certification programs.

3.4 **Methods for Acquiring Test Samples.** AHRI or the Laboratory personnel shall make at least 50% of the Participant’s Random Sample Selections or Random Component Selections from the Participant’s stock inventory within 45 calendar days of a selection by AHRI. AHRI or the Laboratory personnel shall make 100% of the Participant’s Random Sample Selections or Random Component Selections from the Participant’s stock inventory within 90 calendar days of a selection by AHRI.

For Random Component Selection, the sample shall be comprised of a minimum set of three (3) of each major component, Indoor Unit coil, Outdoor Unit coil and compressor. Selected samples shall be shipped to the Laboratory accompanied by the Participant’s published installation instructions in printed or electronic format. The Two Sample Supply Option also applies. Refer to Section 9 of the AHRI General Operation Manual.

Production Stopped and custom made models may be acquired from the distribution chain. Expenses for this option are borne by the Participant. If a Production Stopped model cannot be supplied for testing, then that model’s listing shall be Discontinued in the Directory.

3.4.1 **Selecting Three Additional Samples.** At the time of a sample selection, the Participant has the option to select three (3) additional samples of the same sample to be on hold at a Participant’s facility in case the first sample test fails. These samples would be submitted to the Laboratory if the Test Sampling Plan Option is chosen.

3.5 **Sample Acquisition Timeframe.** The Participant shall ship the selected sample(s) to the Laboratory within 14 calendar days of Random Sample Selection or Random Component Selection by Laboratory personnel.

3.6 **System Manufacturer’s Required Equipment Provisions.** The System Manufacturer shall provide a complete system, consisting of the following:

- Outdoor Unit;
- Indoor coil;
- Expansion device;
- Air-moving equipment (if required);
- Other listed system enhancement devices; and
- Published installation instructions.
- Punchlist

The Participant shall be responsible for shipping all necessary equipment and parts to the Laboratory in order to ensure that the sample functions properly and test(s) can be performed in accordance with the Standard.

3.7 **ICM’s Required Equipment Provisions.** The ICM manufacturer shall provide the following:

- Indoor coil;
- Expansion device;
The Participant is responsible for shipping all necessary equipment and parts to the Laboratory in order to ensure that the sample functions properly and test(s) can be performed in accordance with the Standard.

3.8 *Break-in Operation of Test Units.* A Participant, at its expense, shall have the Laboratory operate the equipment for a specified time prior to testing up to the maximum specified in AHRI Standard 210/240. The break-in request should be listed in the comments section of the Directory or the punch list.

3.9 *Certified Data.* In accordance with the Standard, the following certified ratings are verified by test:

3.9.1 *Unitary Small Air-Conditioners (Systems and Mixed-Match Coils), Air-Cooled under 65,000 Btu/h [19,033 W]*

- Standard Rating Cooling Capacity, Btu/h [W];
- Energy Efficiency Ratio (EER), Btu/(W·h); and
- Seasonal Energy Efficiency Ratio (SEER), Btu/(W·h).

3.9.2 *Unitary Small Air-Conditioners (Systems and Mixed-Match Coils), Water-Cooled and Evaporatively Cooled under 65,000 Btu/h [19,033 W]*

- Standard Rating Cooling Capacity, Btu/h [W]
- Energy Efficiency Ratio (EER), Btu/(W·h)
- Integrated Energy Efficiency Ratio (IEER), Btu/(W·h)

3.9.3 *Unitary Small Air-Source Heat Pumps (Systems and Mixed-Match Coils), Air-Cooled under 65,000 Btu/h [19,033 W]*

- Standard Rating Cooling Capacity, Btu/h [W]
- Energy Efficiency Ratio (EER), Btu/(W·h)
- Seasonal Energy Efficiency Ratio (SEER), Btu/(W·h)
- High Temperature Heating Standard Rating Capacity, Btu/h [W]
- Region IV Heating Seasonal Performance Factor (HSPF) Minimum Design Heating Requirement, Btu/(W·h)

3.10 *Tests, Air-Conditioning (Systems and Mix-Matched Coils).* All Unitary Air-Conditioning equipment shall be tested with the DOE “A” and “B” cooling tests as described in the Standard. Standard Rating tests shall be conducted using the nameplate rated voltage and frequency specified in the Standard. For dual nameplate voltage ratings (other than NAECA equipment), tests shall be conducted at 230V.

3.11 *Tests, Heat Pumps (Systems and Mix-Matched Coils).* All Air Source Unitary Heat Pump equipment shall be tested with the DOE “A” and “B” cooling tests, High and Low Temperature Heating, and Frost Accumulation tests as described in the Standard. Standard Rating tests shall be conducted using the nameplate rated voltage and frequency specified in the Standard. For dual nameplate voltage ratings (other than NAECA equipment), tests shall be conducted at 230V.

3.12 *EER<sub>A</sub> Test.* EER<sub>A</sub> is calculated from the DOE “A” test conditions by dividing the capacity by the total system power. For multi-stage systems, the highest rated capacity is used to determine EER<sub>A</sub>. EER<sub>A</sub> ratings shall be given for all Single Packaged Systems and all combinations of Split Systems which the manufacturer intends to be used together.

3.13 *IEER Test.* IEER ratings shall be given for all Water-Cooled and Evaporatively Cooled Unitary Small Air-Conditioners.
3.14 Default Factors – Systems. At the completion of DOE “A” and “B” tests, the Laboratory calculates the SEER using the Cyclic-Degradation Coefficient (C₀) default factor 0.20 even if the sample is certified with a lower C₀, not less than zero.

For heat pumps, at the completion of heating mode and frost accumulation tests, the Laboratory calculates the HSPF with C₀ default factor 0.25. For Variable Capacity Systems, if the optional G_low and l_low tests are not performed, a default value of 0.25 shall be used for the cooling Degradation Coefficient, C₀.

3.15 DOE “C” and “D” Tests. If the calculated SEER is less than 95% of the certified SEER, the sample may proceed through the DOE “C” and “D” tests at the Participant’s option and expense to obtain a tested C₀ value. The tested C₀ value shall be lower than the default C₀ for it to be used to calculate SEER.

Even if the requirements are met using the appropriate default C₀ value, the Participant may opt for “C” and “D” tests to be performed at his expense. If the tested C₀ is higher than the default value, the default value is to be used to calculate SEER.

AHRI may require, at the expense of the Program, “C” and “D” tests to be performed on systems to assure sufficient qualified condensing units for ICM tests.

3.16 High Temperature Heating Cyclic Test. For heat pumps whose calculated HSPF is less than 95% of the certified HSPF, the model may, at the Participant’s option and expense, undergo High Temperature Heating Cyclic Test to obtain a tested C₀ value. The tested C₀ value shall be lower than the default C₀ for it to be used to calculate HSPF.

Even if the requirements are met using a default C₀ value of 0.25, the Participant may, at his expense, opt to perform the High Temperature Heating Cyclic Test.

AHRI may require, at the expense of the Program, the High Temperature Heating Cyclic Test to be performed on systems to assure sufficient qualified condensing units for ICM tests.

3.17 Outdoor Unit Qualification for ICM Testing:

3.17.1 Definitions:

3.17.1.1 Qualified Unit. An Outdoor Unit that is provided from a certified system that passes all certified values and is compliant with its Condenser Curves per Appendix B.

3.17.1.2 Unqualified Unit. An Outdoor Unit that does not pass all certified values.

3.17.1.3 Disqualified Unit. An Outdoor Unit that is provided from a certified system that:

- did not pass all certified values;
- was a previously Qualified Unit that has been used for testing more than three (3) test years.)

3.17.2 Qualified Units Testing. ICM tests shall be performed with Qualified Units. If a Qualified Unit is unavailable, the ICM test may be performed using an Unqualified Unit following the procedure defined in Figure C2 of Appendix C.

3.17.3 Challenging a Qualified Condenser/Non-Qualified Condenser. The performance of a condenser may be challenged by the ICM. The Participant shall provide a detailed report stating the reason the Participant believes the condenser is not performing correctly. If AHRI agrees with the report, a new Outdoor Unit with the same model number shall be obtained for the test.
3.17.3.1 **Non-Qualified Condenser.** Participants shall not be charged with a first sample failure where the Outdoor Unit is deemed Unqualified.

3.17.4 **Fees.** Costs of tests to further Qualify Unqualified Outdoor Units as required by Appendix C shall be borne by the Program. Costs of ICM tests, where the condenser was determined to be the cause of the failure, shall be borne by the Program. Costs of valid ICM tests shall be borne by the Participant.

3.18 **Test Failures.**

3.18.1 **Certified Rating Test Failures – Systems.**

3.18.1.1 **First Sample Certified Rating Test Failure.** When the Participant is notified of a first sample certified rating failure, the Participant has seven (7) calendar days to select one (1) of the following options:

- Re-rate all models within the failed sample’s BMG proportionate to the failed test’s results;
- Re-test the same sample if the sample has operated less than 16 hours including any break-in running time. After 16 hours of operation, the Participant may request a second DOE “A” and “B” test, all at the Participant’s expense. This re-test shall establish whether the first test is a pass or fail.
- Test additional samples (up to 3) to determine if the test results meet the certified ratings. The Participant shall need to establish the number of additional samples that shall be tested at the time of choosing this option. All additional samples shall need to be provided at the same time for selection within 30 days; otherwise the Participant forfeits this option. After selection, additional samples may be shipped individually or together following completion of each additional sample test, inclusive of the first sample failure.
- DTC Sample Option. Following failures from the additional sample option, the Participant can elect to save the DTC and the rest of the BMG from a re-rate by testing the DTC sample and another sample from the same BMG (refer to Section 3.18.1.2).
- Obsolete the model, which also obsoletes all models within the corresponding BMG.

3.18.1.2 **Option to Save DTC and Remaining BMG Ratings.** If the failed system is not the DTC, the Participant may, at his expense and within seven (7) calendar days after notification of test results, request the DTC be tested. If the DTC passes the test, then the Participant has the option to have another sample selected for test by AHRI from the same BMG to save the rest of the BMG. If the other sample fails, the entire BMG other than the DTC is re-rated to the latest test results. For a BMG with multiple DTCs, the highest rated (SEER/HSPF or capacity) DTC shall be tested.

3.18.1.3 **Test Sampling Plan Failure.** When the Participant is notified of a Test Sampling Plan failure, the Participant has seven (7) calendar days to select one (1) of the options in Section 3.18.1.1 for each sample that fails.

For ENERGY STAR® failures, refer to Section 16 of the AHRI General Operations Manual.

3.18.2 **Certified Rating Test Failures – ICMs.**
3.18.2.1 First Sample Certified Rating Test Failure. If an ICM Participant’s coil fails with a given System Manufacturer’s Outdoor Unit, then the ICM has seven (7) calendar days to decide to choose one of the following options:

- Re-rate all models within the failed sample’s BMG proportionate to the failed test’s results;
- Test additional samples (up to 3) to determine if the test results meet the certified ratings. The Participant shall need to establish the number of additional samples that shall be tested at the time of choosing this option. All additional samples shall need to be provided at the same time within 30 days; otherwise the Participant forfeits this option. Additional tests shall not count toward the number of tests that a qualified condenser can be used. (refer to Section 3.18.1.3)
- Test additional samples (up to 3 utilizing same model coil and same model System Manufacturer condenser). The Participant shall provide both the Indoor Unit and Outdoor Unit. The Outdoor Unit shall be immediately tested with the ICM coil and forgo qualification testing. The ICM shall pay for all expenses including obtaining the Outdoor Unit, break-in, and cost for running the second sample test. All additional samples shall be provided at the same time within 30 days; otherwise the Participant forfeits this option
- Second Sample (utilizing same model coil and different System Manufacturer condenser). Direct AHRI to select and test a new sample coil with an Outdoor Unit from a different System Manufacturer. The coil shall be rated with the Outdoor Unit selected. Expenses for obtaining another Outdoor Unit and testing shall be paid for by the Participant.
  - If the combination passes, only the combination that failed shall be re-rated.
  - If the combination fails, then re-rate that combination and all the other combinations in that BMG.
- Obsolete the model, which also obsoletes all models within the corresponding BMG.

3.18.2.2 Test Sampling Plan Failure. When the Participant is notified of a Test Sampling Plan failure, the Participant has seven (7) calendar days to select one (1) of the options in Section 3.18.2.1.

3.18.2.3 Alternate Outdoor Unit Failures. Any ICM test selections made by AHRI using an DTC alternate Outdoor Unit that fails certified ratings per Figure C2 (Appendix C) shall be incremental to the OEM’s yearly selection. The test’s results shall be credited to the OEM’s following year’s selection and the test failure shall follow the current operations manual procedure. The re-rate shall apply immediately.

3.18.3 Test Additional Samples Option.

3.18.3.1 Following a First Sample Failure. The Participant shall identify the maximum number of additional tests requested up to a maximum of three (3).

1. The first additional test shall be performed; this sample is considered the “second sample” test.
   a. If all of the first additional test’s descriptors result in a rating greater or equal to 95% of the certified rating, testing shall halt and unused equipment shall be shipped
back to the manufacturer, the original rating shall remain and no re-rates shall be needed.

b. If any descriptor rating falls below 95% of the certified rating, the first sample and the second sample shall be evaluated using the Statistical Analysis Procedure (refer to Section 3.18.3.1.1) with a $T$ value of 3.078.

c. Following the Statistical Analysis Procedure performed in 1.b., if all descriptors result in a rating greater or equal to 95% of the certified rating, testing shall halt and unused equipment shall be shipped back to the Participant, the original rating shall remain and no re-rates shall be needed.

d. If any descriptor rating falls below 95% of the certified rating, the Participant may choose to continue testing in the plan or to concede to a re-rate to the second sample's test results. In the later case the first additional test statistic shall stand.

2. If any descriptor still falls below the 95% threshold a second additional test shall be performed, the first, second and third samples shall be evaluated using the Statistical Analysis Procedure with a $T$ value of 1.886.

a. If all descriptors result in a rating greater or equal to 95% of the certified rating, testing shall halt and unused equipment shall be shipped back to the Participant, the original rating shall remain and no re-rates shall be needed.

b. If any descriptor rating falls below 95% of the certified rating the Participant may choose to continue testing in the plan or to concede to a re-rate. In the latter case, the product shall be re-rated to the rating from the above procedure.

3. If any descriptor still falls below the 95% threshold a third and final additional test shall be performed, the first, second, third and fourth sample shall be evaluated using the Statistical Analysis Procedure with a $T$ value of 1.638.

a. If all descriptors result in a rating greater or equal to 95% of the certified rating, the original rating shall remain and no first test failure statistic shall be considered.

b. If a descriptor falls below 95% then the product shall be considered non compliant and the product shall be re-rated to the rating from the above procedure.

4. At any time in the above procedure the Participant may concede to a re-rate and testing shall cease and the rating shall be revised to the most recent multi sample rating determined above.
3.18.3.1.1 **Statistical Analysis Procedure.** AHRI shall perform a statistical analysis based on the number of samples tested.

Mean (x) \[ x = \frac{\sum_{i=1}^{n} x_i}{n} \]

Standard Deviation (s) \[ s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \]

Standard Error (sx) \[ s_x = \frac{s}{\sqrt{n}} \]

Lower Confidence Limit (LCL) \[ LCL = x - T \times s_x \]

Statistical Rating \[ = \frac{LCL}{0.95} \]

For 2 Test Samples, \( T = 3.078 \)
For 3 Test Samples, \( T = 1.886 \)
For 4 Test Samples, \( T = 1.638 \)

The \( T \) value used shall be based on the number of samples tested with a 90% confidence limit. To derive at the statistical rating, LCL is divided by 0.95. The lower of either the mean or statistical rating is used to compare against the certified rating. If the analysis shows that the product rates above 95% of the Participant’s rating, the rating shall pass, if it does not, then the rating fails. The statistical analysis calculations are taken from the Code of Federal Regulations (CFR) Title 10, Part 429, Subpart B, §429.16 Central air conditioners and heat pumps.

3.18.3.1.2 **Outlier Determination.** Upon failure using the Statistical Analysis Procedure in 3.18.3.1.1, using 4 samples the manufacturer may elect to claim an outlier in the data. AHRI shall evaluate the claim using the following procedure. If it is determined that there is an outlier the manufacturer may elect to replace the outlier sample with a substitute sample. Upon completion of the testing of the substitute sample there shall be no further substitute sample testing options available to the manufacturer.

3.18.3.1.3 **Outlier Determination Procedure.** For each certified descriptor perform 4 calculations using the 4 test results. Determine the average and standard deviation of 3 samples, leaving the fourth one out. Calculate the Z factor \((\text{abs(mean of three } - \text{ value of left out sample}) / \text{ standard deviation of three})\) for each descriptor.

For each certified descriptor:

Mean (x) \[ x_a = \frac{(\sum_{i=1}^{4} x_i) - x_1}{3}, \]
\[ x_b = \frac{(\sum_{i=1}^{4} x_i) - x_2}{3}, \]
\[ x_c = \frac{(\sum_{i=1}^{4} x_i) - x_3}{3}, \]
\[ x_d = \frac{(\sum_{i=1}^{4} x_i) - x_4}{3} \]
Standard Deviation (s)

\[
\begin{align*}
S_a &= \sqrt{\frac{\sum_{i=1}^{4} (x_i - x_{a})^2 - (x_1 - x_{a})^2}{2}}, \\
S_b &= \sqrt{\frac{\sum_{i=1}^{4} (x_i - x_{b})^2 - (x_2 - x_{b})^2}{2}}, \\
S_c &= \sqrt{\frac{\sum_{i=1}^{4} (x_i - x_{c})^2 - (x_3 - x_{c})^2}{2}}, \\
S_d &= \sqrt{\frac{\sum_{i=1}^{4} (x_i - x_{d})^2 - (x_4 - x_{d})^2}{2}}.
\end{align*}
\]

Z Factor (Z)

\[
\begin{align*}
Z_a &= \frac{\text{abs}(x_a - x_1)}{S_a}, \\
Z_b &= \frac{\text{abs}(x_b - x_2)}{S_b}, \\
Z_c &= \frac{\text{abs}(x_c - x_3)}{S_c}, \\
Z_d &= \frac{\text{abs}(x_d - x_4)}{S_d}.
\end{align*}
\]

Determine the maximum Z factor from all of the certified descriptors. If the maximum Z factor is greater than 3.0 then it identifies the specific outlier system that is eligible for substitution.

The manufacturer may choose to eliminate the outlier and have a substitution system for selection to complete the rating process.

AHRI shall determine the verdict using the three non-outlying samples and the substitution sample using the Statistical Analysis Procedure in 3.18.3.1.1.

3.18.4 Re-Rate Following Test Additional Sample. Following the decision to Test Additional Samples, if the Participant concedes to re-rate their rating or it has been determined that the rating is non-compliant through the statistical analysis, the model combination will be re-rated based on the DOE Rating Procedures, 10 CFR Part 429, Subpart B, §429.16. Furthermore, all models within the failed sample’s BMG will be re-rated the same proportionately.

3.18.4.1 Re-Rate Following First Additional Test “Second Sample”. If the Participant concedes to re-rate their rating after the first additional test or “second sample”, the model combination will be re-rated to the second sample test results.

3.19 NAECA and Energy Policy Act (EPACT) Re-rating Requirements. EPACT units are those that operate on three phase power.

- In all cases of tested combinations where the test results require re-rating at less than the applicable minimum efficiency, the model shall be made obsolete and listed with the appropriate “WAS” ratings. Failure option tests continue to apply.
- For Single Packaged Systems that do not meet the minimum efficiency requirement, all models in the BMG shall be re-rated in proportion to the test results and made obsolete.
- If a non-DTC model is tested, all combinations in the BMG shall be re-rated in proportion to the difference between the rated and test results.
  - The Participant may, at his expense and within seven (7) calendar days after notification of test results, request the DTC be tested. If the DTC passes the test, then the Participant has the option to have another non-DTC sample selected for test by AHRI from the same BMG to save the rest of the BMG. If the other sample fails, the entire BMG other than the DTC sample is re-rated to the latest test results.
- If any system in a BMG is re-rated below the applicable minimum efficiency, the Participant may elect to test any such combination to determine the pass/fail status of that combination only.
3.20 **Test Sample Refrigerant Charge.** The Laboratory shall charge the sample in accordance with the Participant’s installation instructions. If a range is provided, the mean of the range shall be used for the test. For ICMs, the Laboratory shall follow the ICM’s charging instructions. If no charging instructions are provided by the ICM, the Laboratory shall charge per the System Manufacturer’s installation instructions.

Refer to Section 9 of the AHRI General Operations Manual.

4. **Challenge Tests**

Except as noted below, the Challenge Test process shall proceed according to the AHRI General Operations Manual, Section 10.

4.1 **System Manufacturer Challenges.** The policies and procedures regarding the challenge of a System Manufacturer’s ratings are outlined in the AHRI General Operations Manual.

4.2 **ICM Challenges.** If an ICM’s rating is challenged, the following procedures shall be followed:

4.2.1 **Test the System DTC.** The Laboratory shall first test the Outdoor Unit as a system paired with the System Manufacturer’s **DTC** Indoor Unit. All performance ratings shall pass at or above 95%.

4.2.1.1 **Acquiring Challenge Units.** A new System Manufacturer Indoor Unit and Outdoor Unit shall be acquired in accordance with Section 10 of the General Operations Manual.

4.2.1.2 **System Challenge Test Pass.** If all system performance ratings pass at or above 95%, proceed to test the ICM match (Section 4.2.2).

4.2.1.3 **System Challenge Test Failure.** In the event the System Manufacturer’s system does not pass at or above 95%, the challenge test shall be redirected towards the System Manufacturer and treated as a System Manufacturer’s challenge. Failure options are the same as Participants with annual testing (Section 3.17.2). If the System Manufacturer ultimately re-rates the system, the ICM shall re-rate its affected models by the same percentage re-rate as the system’s ratings. Further testing of the ICM Indoor Unit shall not be required.

4.2.2 **Test the ICM Match.** The Laboratory shall test the ICM Indoor Unit with the System Manufacturer’s Outdoor Unit.

4.2.2.1 **ICM Challenge Test Pass.** If all ICM certified ratings pass, the Challenge test is over and the ICM Participant and challenger are notified of the outcome per Section 10 of the General Operations Manual.

4.2.2.2 **ICM Challenge Test Failure.** Following a first sample failure, the challenged party has all the same options as a Participant with annual testing (Section 3.18.2.1). If an option to test with a different Outdoor Unit is selected, expenses for obtaining another Outdoor Unit and testing shall be paid for by the challenged Participant. The coil shall be rated with the Outdoor Unit selected.

4.3 **Test Challenge Fees.** For challenge tests, the same fees apply as those for regularly scheduled testing.

The cost of all fees (e.g. selection, sample shipment and disposition, and testing) associated with the challenge test shall be borne by one of the three parties concerned (ICM Participant, System Manufacturer Participant, or challenger).
4.3.1 **Final Outcome System Challenge Test Failure.** If the final outcome of the system challenge test is a “fail,” the challenged System Manufacturer is responsible for all costs associated with the first sample test (Indoor Unit, Outdoor Unit and test fees).

4.3.2 **Final Outcome ICM Challenge Test Failure.** If the final outcome of the ICM challenge test is a “fail,” the challenged ICM is responsible for all costs associated with the first sample test (Indoor Unit, Outdoor Unit and test fees).

4.3.3 **Final Outcome ICM Challenge Test Pass.** If the final outcome of the challenge test is a “pass,” the challenging party is responsible for all costs associated with the first sample test (Indoor Unit, Outdoor Unit and test fees).

If the challenged party elects to test any additional samples, all associated costs for the additional testing shall be paid by the challenged party.

5. **AHRI Directory of Certified Product Ratings Data Listings**

All certified products shall be listed in the Directory, [www.ahridirectory.org](http://www.ahridirectory.org). Certification shall not be implied nor claimed for any product not listed in the Directory. Except as noted below, the Participant shall follow the steps outlined in Section 11 of the AHRI General Operations Manual.

5.1 **Publication of Ratings in Certified Directory.** The following information pertaining to each model certified shall be published in the Directory:

- AHRI Certified Reference Number
- Model Status
- Manufacturer Type
- Series Name
- Brand Name of Model
- Outdoor Unit
  - Name of Manufacturer
  - Model Number(s) or Designations
- Indoor Unit
  - Name of Manufacturer
  - Model Number(s) or Designations
- Furnace
- AHRI Standard Rating Cooling Capacity, Btu/h [W]
- Energy Efficiency Ratio, EER, Btu/(W·h)
- Integrated Energy Efficiency Ratio, IEER, Btu/(W·h)
- Seasonal Energy Efficiency Ratio, SEER, Btu/(W·h)
- Phase
- AHRI Type
- **DTC**
- Sold in?
- Region Eligibility
- Exclusively for Canada or Export:
  - The following footnote may be added to AHRI Certificates: “The AHRI 210/240 certified EER ratings are calculated under the same methodology as the EER ratings at T1 conditions of ISO 5151:2010 and ISO 13253:2011.”
- High Temperature Heating Standard Rating Capacity, Btu/h [W], if applicable
- Low Temperature Heating Standard Rating Capacity, Btu/h [W], if applicable;
- Region IV Heating Seasonal Performance Factor, HSPF, if applicable
- Indoor Full-Load Air Volume Rate (A2 SCFM)
- Indoor Cooling Intermediate Air Volume Rate (Ev SCFM)
- Indoor Cooling Minimum Air Volume Rate (B1 SCFM)
Eligibility for Tax Credit
Energy Guide Label
Is Rerated

Additional data may be shown for products sold in areas requiring further product information/ratings or EPA ENERGY STAR® listings.

5.2 Data Forms. Each Participant shall list its products. OEM Participants shall submit/edit product data via the Directory.

5.2.1 Making Changes to Submissions. If a Participant submits new listings to the Directory via the input interface on the Directory, the Participant shall be able to make corrections to the listings until 11:59 pm ET on the date of the submission. The data is published and sent to the DOE after midnight.

5.3 NAECA and EPACT Requirements. The Directory only lists equipment within the scope of the USE OM. For products for sale in the United States and its territories, the Directory will only list products that meet NAECA (single phase) or EPACT (3 phase) minimums. If a product, or group of products, shall be removed from the Directory for failure to meet NAECA or EPACT minimums, AHRI shall notify DOE of the delisting. It is solely the Participant's responsibility to address all DOE requests and obligations. This requirement exists only for where NAECA and EPACT minimums are applicable.

5.4 Alternate Efficiency Determination Method (AEDM). By means of input interface on the Directory or through data submittal spreadsheets, all Participants shall indicate whether product ratings were established through testing or with an AEDM.

5.5 Designated Tested Combination (DTC). A DTC is the system combination designated by a Participant. A System Manufacturer Participant shall designate one (1) DTC for every split system outdoor model within each Brand Name (3 phase products are excluded from this requirement). Two (2) or more DTCs are permitted within the same BMG. See Table 1 for DTC requirements.
<table>
<thead>
<tr>
<th>Category</th>
<th>Equipment subcategory</th>
<th>Must test:</th>
<th>With:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Package Unit</td>
<td>Single-Package AC (including Space-Constrained)</td>
<td>The individual model with the lowest SEER (when testing in accordance with appendix M to subpart B of part 430) or SEER2 (when testing in accordance with appendix M1 to subpart B of part 430)</td>
<td>N/A.</td>
</tr>
<tr>
<td>Single-Package HP</td>
<td>Single-Package AC (including Space-Constrained)</td>
<td>N/A.</td>
<td>N/A.</td>
</tr>
<tr>
<td>Outdoor Unit and Indoor Unit</td>
<td>Single-Split-System AC with Single-Stage or Two-Stage Compressor (including Space-Constrained and Small-Duct, High Velocity Systems (SDHV))</td>
<td>The model of outdoor unit</td>
<td>A model of coil-only indoor unit.</td>
</tr>
<tr>
<td>(Distributed in Commerce by OUM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Unit and Indoor Unit</td>
<td>Single-Split-System AC with Other Than Single-Stage or Two-Stage Compressor (including Space-Constrained and SDHV)</td>
<td>The model of outdoor unit</td>
<td>A model of indoor unit.</td>
</tr>
</tbody>
</table>
Table 1: Designated Tested Combination (DTC) Requirements (Continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Equipment subcategory</th>
<th>Must test:</th>
<th>With:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Unit Only (Distributed in Commerce by ICM)</td>
<td>Single-Split-System Air Conditioner (including Space-Constrained and SDHV)</td>
<td>A model of indoor unit</td>
<td>The least efficient model of outdoor unit with which it will be paired where the least efficient model of outdoor unit is the model of outdoor unit in the lowest SEER combination (when testing under appendix M to subpart B of part 430) or SEER2 combination (when testing under appendix M1 to subpart B of part 430) as certified by the OUM. If there are multiple models of outdoor unit with the same lowest SEER (when testing under appendix M to subpart B of part 430) or SEER2 (when testing under appendix M1 to subpart B of part 430) represented value, the ICM may select one for testing purposes.</td>
</tr>
<tr>
<td></td>
<td>Single-Split-System Heat Pump (including Space-Constrained and SDHV)</td>
<td>Nothing, as long as an equivalent air conditioner basic model has been tested</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multi-Split, Multi-Circuit, or Multi-Head Mini-Split</td>
<td>A model of indoor unit</td>
<td>A “tested combination” composed entirely of SDHV indoor units, where the outdoor unit is the least efficient model of outdoor unit with which the SDHV indoor unit will be paired. The least efficient model of outdoor unit is the model of outdoor unit in the lowest SEER combination (when testing under appendix M to subpart B of part 430) or SEER2 combination (when testing under appendix M1 to subpart B of part 430) as certified by the OUM. If there are multiple models of outdoor unit with the same lowest SEER represented value (when testing under appendix M to subpart B of part 430) or SEER2 represented value (when testing under appendix M1 to subpart B of part 430), the ICM may select one for testing purposes.</td>
</tr>
<tr>
<td></td>
<td>Split System—SDHV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outdoor Unit with No Match</td>
<td>The model of outdoor unit</td>
<td>A model of coil-only indoor unit meeting the requirements of section 2.2e of appendix M or M1 to subpart B of part 430.</td>
</tr>
</tbody>
</table>

5.6 **ICM Listing Requirements.** ICMs shall list certified ratings for all coils together with each Outdoor Unit intended to be used in a system. Published installation instructions shall be available with the coil. Optional and standard devices, not a part of the coil assembly, which affect ratings, shall be indicated in the Participant’s installation instructions.

5.6.1 **Heat Pump Listing Requirements.** ICMs shall comply with Requirements for Certification of ICM Heat Pump Ratings (refer to Appendix A).
5.7 **Identical Coil Ratings.** Should the performance of two (2) coils be identical and the only physical difference is that one is encased or in a sleeve, both can be listed on the same line and both be designated with the condensing unit as the DTC.

5.8 **Listing Equipment with Enhancement Components.** The air moving device and enhancements (e.g. thermal expansion valve (TXV), time delay relay (TDR), etc.) shall be indicated by model number and when assembled, shall result in a complete Indoor Unit with sufficient information contained in the installation instructions to describe the assembly.

Enhancements, available via distribution by the ICM, are to be indicated in Directory listings by the plus (+) sign, following the Indoor Unit designation. All combinations of these enhancements shall be listed, with respective certified system performance data.

5.9 **ICM Notice of Revised System DTC and/or Baseline Rating.** ICM Participants using an AEDM shall be notified by AHRI if a change is made to a system DTC and/or baseline rating. The baseline rating is derived from an existing AHRI certified system combination provided by the ICM. The ICM Participant shall have 30 calendar days to review the notice and choose to a) re-rate its affected units or b) decide no rating change is required. If the ICM Participant does not make a choice within 30 calendar days and the system was de-rated, AHRI shall automatically de-rate the ICM’s ratings by the same percentage of de-rate in the system’s rating.

5.9.1 **Test Locked Ratings.** Section 5.9 also applies to ratings that are locked for testing. For ratings that are locked, the ICM can only adjust the ratings no more than the same percentage of de-rate in the system manufacturer’s rating.

5.10 **Specific Indoor Coil Data.** Participants can download additional specific indoor coil data and condenser curve coefficients from the Directory.

5.11 **Condenser Curve Coefficients.** Refer to Appendix B for definitions of the condenser curve coefficients to be supplied by System Manufacturers.

5.12 **Rating Screening for ICMs.** AHRI shall not list any new ratings that exceed the following thresholds. All ratings that fall within the thresholds shall appear in the Directory within three (3) calendar days of submission to the Directory.

5.12.1 **6% Screen.** AHRI shall screen all USAC and USHP ratings that are in excess of the System Manufacturer’s SEER, EER and HSPF ratings in accordance with the criteria described below. Ratings exceeding the thresholds indicated below shall be published only after AHRI has reviewed and approved the data. The screening criteria are as follows:

- All ICM USAC ratings that are in excess of the ICM System Manufacturer’s rating by more than 6% SEER and/or EER;

- All variable speed furnace USAC ratings that are in excess of the System Manufacturer’s DTC coil ratings with the same furnace and condensing unit by more than 6% SEER and/or EER;

- For variable speed furnace USAC ratings, in the event of absence of DTC coil rating with the furnace, all ratings that are more than 6% SEER and/or EER in excess of the highest rating of a System Manufacturer’s coil rated with that furnace and Outdoor Unit;

- All coil-blower USHP ratings that are in excess of the DTC coil-blower System Manufacturer’s rating by more than 6% SEER and/or EER and/or HSPF ratings;

- For variable speed air-handler USAC and USHP ratings, in the event of absence of variable speed DTC air-handler rating, all ratings that are more than 6% SEER
and/or EER and/or HSPF in excess of the highest rating of a System Manufacturer’s coil rated with that variable speed air-handler and Outdoor Unit;

- For variable speed furnace USHP ratings, in the event of absence of DTC coil rating with the furnace, all ratings that are more than 6% SEER and/or EER and/or HSPF ratings in excess of the highest rated System Manufacturer’s coil matched with that furnace and Outdoor Unit;

- All ICM USHP ratings that are in excess of the coil-only System Manufacturer’s highest rating by more than 6% SEER and/or EER and/or HSPF ratings; and/or

- For ratings of ICM combinations (-C ratings) that are based on System Manufacturer DTC coil blower (-CB) BMG and without coil-only (-C) ratings, if the System Manufacturer DTC coil blower (-CB) system combination is with either a furnace or air-handler with a brushless DC motor (Ex: Multiple Speed – Constant Torque, Variable Speed), then the ICM cannot list a coil-only (-C) rating with it. If the DTC coil blower type is a PSC motor (Ex: Single Speed, Dual Speed, Multiple Speed – PSC), then the ICM coil-only (-C) rating cannot be in excess of the System Manufacturer’s DTC by more than 6% SEER and/or EER and/or HSPF ratings.

5.12.1.1 Entering Data Above 6% Screen. If a Participant provides ratings to AHRI that exceed the 6% threshold, Participants shall be required to provide test reports and/or AEDM simulation input/output justifying the rating. Based on AHRI’s approval, the listings shall be published in the Directory.

5.12.1.2 Entering Air-Handler Ratings. If a Participant adds ICM combination air-handler (i.e. – a blower unit and evaporator coil combined) ratings when the System Manufacturer DTC combination is coil-only, Participants shall be required to provide test reports and/or AEDM simulation input/output justifying the rating. Based on AHRI’s approval, the listings shall be published in the Directory.

5.12.2 Coil Geometry Screening. AHRI shall screen all single-speed and single-stage units as per Appendix G.

5.12.3 Internal Refrigerant Volume (IRV) Screening. AHRI shall screen all Heat Pump ratings for ICMs where the IRV is above or below the System Manufacturer’s IRV, in accordance with the criteria described in Appendix A.

5.13 DOE Regional Standard Requirements.

5.13.1 Air-Conditioner Regional Label Requirement. If a Participant is manufacturing a model that can be installed in the Southwest region (as defined in 10 CFR Part 430.32), no label is required.

If a Participant is manufacturing a model that can only be installed in the North region (as defined in 10 CFR Part 430.32), the Participant shall have the statement, “Install Prohibited in Southeast and Southwest.” on or near the nameplate of the condensing unit.

If a Participant is manufacturing a model that can only be installed in the North and Southeast regions (as defined in 10 CFR Part 430.32), the Participant shall have the statement, “Install Prohibited in Southwest.” on or near the nameplate of the condensing unit.

The Laboratory shall verify there is a statement present, where applicable. If the required statement is not present, the Laboratory shall notify AHRI immediately. This requirement is for products manufactured after the effective date of March 1, 2015. The Participant shall provide a method of determining the date of manufacture upon request.
5.13.2 **Condenser Characteristics.** Participants shall identify the regions that the condenser is eligible for installation in the "Regions" field of the Condenser Characteristics.

5.13.2.1 **Regional Standards for Single Line Add/Edits.** If a Participant submits a single line new/edit to the Directory via the input interface that would alter the region where the model can be installed, the Directory shall prevent the ratings from being added. Participants shall edit the region field in the condenser characteristics table, and resubmit the listings. The data shall be published and sent to DOE after the Directory overnight process, on the date of the submission.

5.13.2.2 **Regional Standards for Mass Upload Add/Edits.** If a Participant submits a mass upload of new/edit listings to the Directory via the input interface that would alter the region where the model can be installed, the Directory shall prevent the ratings from being added. A notification shall be sent listing the invalid submissions. Participants shall edit the region field in the condenser characteristics table, and then resubmit the listings. The data shall be published and sent to DOE after the Directory overnight process, on the date of the submission.

5.13.2.3 **Regional Efficiency Range.** When a Participant is adding or editing model listings, the Directory shall validate whether the new rating exceeds the range specified on the condenser characteristics table. For ratings submitted that exceed the regional efficiency range, the Directory shall prevent the ratings from being added. Participants shall edit the range for SEER and/or HSPF in the condenser characteristics table, and then resubmit the listings to enter the listings in.

Note: The ranges provided in the condenser characteristics table shall only be used for validation purposes, the FTC EnergyGuide label generated from the Directory shall determine the range automatically from the data in the Directory and place it on the label.

5.14 **DOE Test Waivers and Stay Exceptions.**

5.14.1 **DOE Test Waiver.** In the event the Department of Energy (DOE) grants a test procedure waiver to a manufacturer regarding portions of DOE certification requirements and/or test procedure applicable to the USE certification program, the test procedure waiver shall go into effect, for only the specific manufacturer and only the specific basic models specified by DOE in the test waiver, from the time the Test Waiver is made effective by DOE. The changes from the granted test procedure waiver shall remain in effect in the USE certification program until such time as DOE modifies the certification requirements and/or test procedure or DOE rescinds the test procedure waiver. The status of the test waiver shall remain consistent from the time of combination selection through the conclusion of the test series for combinations affected by the test waiver.

5.14.2 **Stays.** In the event the Department of Energy (DOE) issues a stay on all or portions of the certification requirements and/or test procedure(s) applicable to the USE certification program, the stay shall go into effect from the time the stay is made effective by DOE, and shall remain as such until the program year concludes after DOE removes the stay. The status of the stay shall remain consistent from the time of combination selection through the conclusion of the test series for combinations affected by the stay.

6. **Assessment and Payment of Certification Fees**

Except as noted below, the assessment and payment of certification fees shall proceed according to the AHRI General Operations Manual, Section 12.

6.1 **Equipment Delivery/Disposal Fees.** The Participant is responsible for the delivery and expenses associated with shipping test samples to the Laboratory. However, following the completion of the sample
test, the sample shall be shipped prepaid by AHRI to the destination specified by the Participant. In the event the sample fails the certified rating test and/or the statistical analysis, the Participant shall complete the required MDF before the sample is shipped and all opportunities to retest the sample are forfeit upon departure from the Laboratory facility. The Participant shall provide instruction to the Laboratory regarding the disposal/shipment of the sample(s).

7. Issuance of Violations and/or Termination

Refer to Section 14 of the AHRI General Operations Manual.

8. Program Hierarchy, Complaints, and the Appeals Process

Refer to Section 15 of the AHRI General Operations Manual.

9. Proper Use of the AHRI Certification Mark and Claims to Certification

Refer to Section 8 of the AHRI General OM.
APPENDIX A: REQUIREMENTS FOR CERTIFICATION OF ICM HEAT PUMP RATINGS

1. Information regarding the mixed Indoor Unit may be verified by the matched System Manufacturer.

2. Mixed Coil Requirements
   
   A. Should the matched System Manufacturer elect to list more than one (1) Internal Refrigerant Volume (IRV) coil for a system:
      
      - The IRV of the mixed Indoor Unit assembly shall not be less than 96.5% of the volume of the smallest matched certified Indoor Unit assembly of the System Manufacturer; and
      - The IRV shall not exceed the larger of either:
        o 103.49% of the IRV of the largest matched certified Indoor Unit assembly of the System Manufacturer; or
        o 120.49% of the IRV of the smallest matched certified Indoor Unit assembly of the System Manufacturer.
      
      IRV shall be rounded to the nearest 1%.

   B. Should the matched System Manufacturer elect to list only one (1) IRV coil for a system:
      
      - The mixed Indoor Unit assembly shall not be less than 96.5% of the matched certified Indoor Unit assembly of the System Manufacturer, and
      - The mixed Indoor Unit assembly shall not be greater than 120.49% of the IRV of the matched certified Indoor Unit assembly of the System Manufacturer.
      
      IRV shall be rounded to the nearest 1%.

   C. Calculation of IRV

   \[
   \text{Number of Tubes in a Row} = \frac{\text{Slab Finned Height}}{\text{Value of First Dimension Identified in Evaporator Tube Centers}}
   \]

   (Ex: If Evaporator Tube Centers = 1.00 x 0.625, the value of the first dimension identified in the Evaporator Tube Center field would be 1.00)

   \[
   \text{Total Number of Tubes} = \text{Number of Tubes in a Row} \times \text{Evaporator Number of Rows} \times \text{Number of Slabs}
   \]

   Note: Number of Tubes in a Row is rounded to the nearest whole number.

   \[
   \text{IRV} = (\text{Slab Finned Length} \times \text{Number of Tubes} \times \left(\left(\frac{\text{Evap OD} - (2.00 \times \text{Wall Thickness})}{2}\right)^2 \times \pi\right))
   \]

   + Charge Compensator

   Note: Wall thickness is 0.012 for Copper and 0.029 for Aluminum.

   Manufacturers have the option to perform an AHRI test at the Laboratory over and above what their yearly testing requirements are to add in a rating that does not meet this criteria.

   D. The Heating Capacity (Btu/h) of the mixed coil shall not exceed the largest certified matched Indoor Unit capacity when rated with a given Outdoor Unit.
3. Mixed Expansion Device Requirements

A. Mixed systems may use an appropriately sized thermostatic expansion valve (TXV) except for series restrictor systems described below.

B. Flow Factor requirements on mixed coils with fixed restrictions:

- If the Designated Tested Combination (DTC) matched system has a fixed restrictor, then the mixed system flow factor shall be within the range of 100-125%; unless the DTC matched system uses a series capillary tube restriction arrangement (i.e. no check valves), then the flow factor for the mixed system shall be within the range of 100-115%.

- If the DTC system is a TXV system, but there are other matched systems which use a fixed indoor restrictor, then the flow factor for the mixed system is based on the fixed indoor restrictor with cooling capacity closest to the tested system. The mixed flow factor shall be within the range of 100-125%.

C. If the certified matched system combinations have only TXV indoor, then the mixed system shall be TXV.

4. The mixed Indoor Unit assembly shall meet the same burst strength requirements as the matched Indoor Unit assembly.

5. If a supplemental heater is operated simultaneously with the heat pump, the heater shall be located in the indoor air circuit downstream from the indoor coil. The heater shall be capable of operating reliably at elevated ambient conditions (30-40°F above return air temperatures).

6. If the return air passes over the indoor coil before passing over the blower motor, the motor shall be capable of operating reliably at elevated ambient conditions (30-40°F above return air temperatures).
APPENDIX B: CONDENSER CURVE INFORMATION

Purpose

This appendix shall:

- Characterize the refrigeration effect (capacity) and power of the Designated Tested Combination (DTC) Outdoor Unit independent of the Indoor Unit and its associated power;
- Provide a standardized, general equation form to characterize Outdoor Unit performance and power; and
- Provide a method of identifying the equation coefficients required for the capacity and power equations.

Scope

The methods outlined herein are applicable to:

- Outdoor Units that are used for cooling only applications;
- heat pump Outdoor Units, cooling only performance and power; and
- AHRI/DOE A, B, C, D, F, and H test conditions as defined in AHRI Standard 210/240.

Definitions

- Condensing Unit – Consists of the Outdoor Unit and all interconnecting lines, liquid and suction, used to connect the outdoor refrigeration system to the Indoor Unit.
- Condenser performance is characterized by the general linear equation:
  \[
  \text{Gross Capacity or Power} = m \cdot (\text{Evaporator Saturation Temperature}) + b
  \]
  Where:
  \[
  m = \text{slope} \quad \quad b = \text{intercept}
  \]
- Condenser power – power, watts, associated with the Outdoor Unit only; no indoor power is to be included.
- Condenser capacity – total capacity, Btu/h, with no indoor power.
- Evaporator Saturation Temperature – the refrigerant saturation temperature, °F, based on the outlet refrigerant pressure of the evaporator.
- DTC – Designated Tested Combination.
- Liquid temperature – the mean of the actual liquid temperature, °F, measured at the inlet to the evaporator flow control during DTC tests.

Requirements

The following information is required for AHRI submittal of each DTC Outdoor Unit and heat pump:

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Slope of capacity equation, A-test</td>
</tr>
<tr>
<td>m2</td>
<td>Slope of power equation, A-test</td>
</tr>
<tr>
<td>m3</td>
<td>Slope of capacity equation, B-test</td>
</tr>
<tr>
<td>m4</td>
<td>Slope of power equation, B-test</td>
</tr>
<tr>
<td>b1</td>
<td>Intercept of capacity equation, A-test</td>
</tr>
<tr>
<td>b2</td>
<td>Intercept of power equation, A-test</td>
</tr>
<tr>
<td>b3</td>
<td>Intercept of capacity equation, B-test</td>
</tr>
<tr>
<td>b4</td>
<td>Intercept of power equation, B-test</td>
</tr>
<tr>
<td>TL A</td>
<td>Liquid temperature entering flow control, A-test</td>
</tr>
</tbody>
</table>
For two-stage systems, a set of capacity and power coefficients as well as liquid temperature are required at each operational stage. One (1) set of coefficients, shown above, is required at each capacity level at the A and B test conditions. Low stage requires reporting at B and F conditions. Older systems may be grandfathered using A and B similar to High Stage.

| Table B2: AHRI Submittal Requirements for Low Stage |
|-----------------|------------------|
| Item            | Definition                   |
| m1              | Slope of capacity equation, B-test |
| m2              | Slope of power equation, B-test  |
| m3              | Slope of capacity equation, F-test |
| m4              | Slope of power equation, F-test  |
| b1              | Intercept of capacity equation, B-test |
| b2              | Intercept of power equation, B-test |
| b3              | Intercept of capacity equation, F-test |
| b4              | Intercept of power equation, F-test |
| TL B            | Liquid temperature entering flow control, B-test |

Guidelines to Determine Coefficients

Figure B1 provides an overview of the process to determine the equation coefficients. Tables B1, B2, B3, B4 and B5 provide a tabular form of the information required to determine the coefficients. As noted on these Tables, information is required from the DTC tests and simulation of the DTC system at different evaporating temperatures.

Rules governing coefficient determination:

1. Simulations are run in the range of 40-52°F evaporator temperatures.
2. Simulations shall take into account the pressure drops associated with the liquid and suction interconnecting lines.
3. Simulated evaporator superheat is to remain a constant value in the case of DTC systems utilizing an expansion valve. For fixed orifice, capillary tubes, or other fixed flow control devices, the superheat shall remain at a constant value for all A-test simulations and remain constant for all B-test simulations. The A-test and B-test superheat are not required to be the same superheat value.
4. Indoor airflow changes, suggested range of ±20-25%, can be used to simulate different evaporator temperatures.
5. Corrections to the simulated values are required so that the performance and power curves pass through the actual mean DTC test points. This is accomplished through changes in the intercept values (b1…b4). Reference Figures B2 and B3.

Note: Condenser Curves are based on the Designated Tested Combination.

Condenser Curve Check

If condenser curves are found on a quarterly audit to be outside of a ±10% tolerance with tested data, then AHRI shall notify the Participant of those coefficients out of tolerance. AHRI shall send Participants’ data at least seven (7) days before meeting to review condenser curve results. Participants shall investigate those coefficients out of tolerance, and have 30 days to make the appropriate corrections or provide evidence to validate their curve. If Participants do not make the corrections and respond to AHRI within 30 days, AHRI shall hide the invalid BMGs in the Directory until corrected.
Determine required DTC Data
See Table 1

Simulate
Use different evaporating temperatures

Determine the values required in Table 2

Only 2 evaporator temperatures simulated?

No

Perform least squares linear regression using simulations (Ref Table 2)

Yes

Calculate slopes; m1, m2, m3, & m4 from simulations, Table 2

Calculate intercepts; b1, b2, b3, & b4 based on DTC data in Table 1

Correct intercepts based on DTC data in Table 1

Determination of Coefficients Complete

Figure B1: Equation Coefficients
<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Power, watts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean System Net Capacity, A-test, Btu/h</td>
<td>Mean of the values measured during DTC testing</td>
<td></td>
</tr>
<tr>
<td>Outdoor Unit Gross Capacity, A-test, Btu/h</td>
<td>Calculated value; Mean system net + indoor power converted to Btu/h</td>
<td></td>
</tr>
<tr>
<td>Mean System Net Capacity B-test, Btu/h</td>
<td>Mean of the values measured during DTC testing</td>
<td></td>
</tr>
<tr>
<td>Outdoor Unit Gross Capacity, B-test, Btu/h</td>
<td>Calculated value; Mean system net + indoor power converted to Btu/h</td>
<td></td>
</tr>
<tr>
<td>Mean System Power A-test, watts</td>
<td>Mean of the values measured during DTC testing</td>
<td></td>
</tr>
<tr>
<td>Outdoor Unit System Power, A-test, watts</td>
<td>Calculated value; Mean system net – indoor power</td>
<td></td>
</tr>
<tr>
<td>Mean System Power B-test, watts</td>
<td>Mean of the values measured during DTC testing</td>
<td></td>
</tr>
<tr>
<td>Outdoor Unit System Power, B-test, watts</td>
<td>Calculated value; Mean system net – indoor power</td>
<td></td>
</tr>
<tr>
<td>Mean Indoor Liquid Temperature, A-test, F</td>
<td>Mean of the values measured during DTC testing</td>
<td></td>
</tr>
<tr>
<td>Mean Indoor Suction Pressure, A-test, psig</td>
<td>Mean of the values measured during DTC testing</td>
<td></td>
</tr>
<tr>
<td>Mean Evaporator Temperature, A-test F</td>
<td>Input or Calculated value; Calculation based on saturation temperature for pressure above</td>
<td></td>
</tr>
<tr>
<td>Mean Indoor Suction Pressure B-test, psig</td>
<td>Mean of the values measured during DTC testing</td>
<td></td>
</tr>
<tr>
<td>Mean Evaporator Temperature, B-test F</td>
<td>Input or Calculated value; Calculation based on saturation temperature for pressure above</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporator Temperature, T1, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, A-test, @ T1, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, A-test, @ T1, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
<tr>
<td>Evaporator Temperature, T2, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, A-test, @ T2, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, A-test, @ T2, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
<tr>
<td>Evaporator Temperature, T1, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, B-test, @ T1, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, B-test, @ T1, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
<tr>
<td>Evaporator Temperature, T2, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, B-test, @ T2, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, B-test, @ T2, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
<tr>
<td>Simulation Inputs</td>
<td></td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td><strong>B-Test</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporator Temperature, T1, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, B-test, @ T1, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, B-test, @ T1, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
<tr>
<td>Evaporator Temperature, T2, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, B-test, @ T2, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, B-test, @ T2, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
<tr>
<td><strong>F-Test</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporator Temperature, T1, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, F-test, @ T1, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, F-test, @ T1, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
<tr>
<td>Evaporator Temperature, T2, F</td>
<td>Saturated suction temperature, evaporator leaving</td>
<td></td>
</tr>
<tr>
<td>Condenser Capacity, F-test, @ T2, btuh</td>
<td>Includes pressure loss of interconnecting lines with addition of indoor power converted to btuh</td>
<td></td>
</tr>
<tr>
<td>Condenser Power, F-test, @ T2, watts</td>
<td>Compressor &amp; OD air mover power only</td>
<td></td>
</tr>
</tbody>
</table>
Figure B2: Typical Condenser Capacity Curve

Figure B3: Typical Condenser Power Curves
APPENDIX C:
CONDENSING UNITS FOR COIL-ONLY CERTIFICATION

Test ICM with Unqualified Outdoor Unit

Pass

YES → Outdoor Unit remains Unqualified

NO

Test Outdoor Unit with DTC (including CD)

ICM Test Valid

All Certified Values >=97%

YES

All Certified Values >=95%

YES → Outdoor Unit Disqualified

ICM Test Invalid

NO

Outdoor Unit Disqualified

ICM Test Invalid

System Manufacturer First Test Failure – See OM

Figure C1: Use of Unqualified Outdoor Units for ICM Testing
Figure D1: Selection and Testing Process
System Manufacturer First Test Failure Options (Efficiency Above NAECA Minimum)

- **Rerate** – Rerate all Combinations in the BMG using the First Sample Test Results

  - **Total Runtime < 16 hours?**
    - **YES**
      - Retest the same unit as first sample test
      - Retest determines the first test pass or failure
    - **NO**
      - **Obsolete** – Entire BMG is derated and obsolete
      - **Complete**
      - **Cannot be retested**

- **Test Additional Samples**

  - Manufacturer must ship additional samples within 30 days
  - **Complete**
  - **Conduct Additional Testing**

- **Save DTC and Remaining BMG Ratings (only available if First Sample was not the DTC)**

  - Test the highest rated (SEER/HSPF or Capacity) DTC

  - **Pass**
    - **YES**
      - Test another of the same BMG chosen by AHRI to save the rest of the BMG. Failure results in entire BMG other than the DTC being rerated.
    - **NO**
      - **Rerate entire BMG**

**Figure D2: System Manufacturer First Test Failure Options**
Coil-Only Manufacturer First Test Failure Options (Efficiency at or above NAECA Minimum)

Rerate all combinations in BMG. Rerate will be the same % by which the test unit failed.

Complete

Obsolete – All combinations in that BMG will be derated and obsolete.

Complete

Test Additional Samples

Manufacturer must ship additional samples within 30 days

Conduct Additional Testing

Test Second Sample with a Different Outdoor Unit

Same coil & AHRI selects outdoor unit from another manufacturer

Second Sample Test

Figure D3: ICM First Test Failure Options
ICM Second Sample Test with Different Outdoor

Figure D4: ICM Second Sample Test
**Test Additional Samples Process**

- Receive Additional Sample Tests
- Break-in Requested? 
  - YES
    - Break-in per Participant’s Instructions (Participant’s Expense)
  - NO
    - Additional Test Sample Certification Testing
- Is this First Additional Sample Test? 
  - YES
    - Did First Additional Sample Pass? 
      - YES
        - Testing is Complete
      - NO
        - Perform Statistical Analysis with Samples
  - NO
    - Do the Results Meet the Testing Requirement? 
      - YES
        - Testing is Complete
      - NO
        - Does Participant Continue Testing? 
          - YES
            - Test a New Additional Sample
          - NO
            - Rerate all combinations in that BMG. Rerate will be the same % as the failure. Rerate will be based off Second Sample test results if only one additional sample is tested, otherwise rerate to Statistical Analysis.

**Figure D5: Test Additional Samples Process**
Rerate All Combinations in the BMG

DTC for the BMG is tested

DTC Passes?

YES

Test another of the same BMG chosen by AHRI to save the rest of the BMG. Failure results in entire BMG other than the DTC being rerated.

NO

Rerate All Combinations in the BMG

Systems Manufacturer
Test Additional Samples Failure Options
Tested Efficiency $\geq$ NAECA Minimum

Tested Combination DTC

Save DTC?

YES

NO

Figure D6: System Manufacturer Test Additional Samples Failure Options
Figure D7: ICM or System Manufacturer First or Additional Sample Failure Options
# APPENDIX E – INDEPENDENT COIL MANUFACTURER BMG DEFINITION

## Table E1: ICM BMG Definition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>6,000 Btu/h increments</td>
<td>One Per 6,000 Btu/h capacity. (For example, see Table F2)</td>
</tr>
<tr>
<td>Air-Handler</td>
<td>Yes or No (mixed case)</td>
<td></td>
</tr>
<tr>
<td>Evaporator Fan Type</td>
<td>Single Speed; Dual Speed; Multiple Speed; Variable Speed (mixed case)</td>
<td></td>
</tr>
<tr>
<td>Evaporator Number of Rows</td>
<td>Whole number</td>
<td></td>
</tr>
<tr>
<td>Air-Cooled, Water-Cooled or Evaporatively-Cooled</td>
<td>Air-Cooled, Water-Cooled or Evaporatively-Cooled</td>
<td></td>
</tr>
<tr>
<td>Evaporator Tube Centers</td>
<td>0.800 x 0.693; 0.85 x 0.736; 1.00 x 0.625; 1.00 x 0.750; 1.00 x 0.866; 1.25 x 1.08; Other; N/A (this option only applicable to Non-Air-Cooled Product)</td>
<td></td>
</tr>
<tr>
<td>Evaporator Fin Type</td>
<td>Flat; Corrugated; Hi Performance; Lanced; Louvered; N/A (This option only applicable to Non-Air-Cooled product) (mixed case)</td>
<td></td>
</tr>
<tr>
<td>Evaporator Fins/Inch</td>
<td>Whole Number</td>
<td>Two (2) fins/inch per BMG (example: 8-9,10-11, 12-13,14-15..etc)</td>
</tr>
<tr>
<td>Evaporator Tube OD</td>
<td>1/4 in; 5/16 in; 3/8 in; 7/8 in; 1/2 in; 1 x 0.072 in; rifled 1/4 in; rifled 5/16 in; rifled 3/8 in; rifled 1/2 in; rifled 7mm; N/A (This option only applicable to Non-Air-Cooled products and Non-Conventional Geometry Products)</td>
<td></td>
</tr>
<tr>
<td>Evaporator Expansion Device</td>
<td>Orifice, Capillary Tube, Expansion Valve (mixed case)</td>
<td></td>
</tr>
<tr>
<td>Finned Length per Slab (in)</td>
<td>One decimal. Minimum 0, maximum 60 in</td>
<td></td>
</tr>
<tr>
<td>Finned Height per Slab (in)</td>
<td>One decimal. Minimum 0, maximum 60 in</td>
<td></td>
</tr>
<tr>
<td>Number of Slabs in the Coil</td>
<td>Whole Number, minimum 1, maximum 10</td>
<td></td>
</tr>
<tr>
<td>Finned Material Type</td>
<td>Options: Copper, Aluminum</td>
<td></td>
</tr>
<tr>
<td>Tube Material Type</td>
<td>Options: Copper, Aluminum</td>
<td></td>
</tr>
<tr>
<td>Total Number of Active Tubes</td>
<td>Whole Number, minimum 1, maximum 1000</td>
<td></td>
</tr>
</tbody>
</table>
Table E2: ICM BMG Bucket – Coil Capacity

<table>
<thead>
<tr>
<th>BMG Bucket – Coil Capacities</th>
<th>Min Capacity (in Btu/h)</th>
<th>Max Capacity (in Btu/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6000</td>
<td>11900</td>
</tr>
<tr>
<td>2</td>
<td>12000</td>
<td>17900</td>
</tr>
<tr>
<td>3</td>
<td>18000</td>
<td>23900</td>
</tr>
<tr>
<td>4</td>
<td>24000</td>
<td>29900</td>
</tr>
<tr>
<td>5</td>
<td>30000</td>
<td>35900</td>
</tr>
<tr>
<td>6</td>
<td>36000</td>
<td>41900</td>
</tr>
<tr>
<td>7</td>
<td>42000</td>
<td>47900</td>
</tr>
<tr>
<td>8</td>
<td>48000</td>
<td>53900</td>
</tr>
<tr>
<td>9</td>
<td>54000</td>
<td>59900</td>
</tr>
<tr>
<td>10</td>
<td>60000</td>
<td>64900</td>
</tr>
</tbody>
</table>

Definitions:

I. **Fin Definitions.**
   a. **Flat.** A flat surface without amplitudes.
   b. **Corrugated.** A flat surface modified with angular amplitudes.
   c. **Hi-performance.** A flat surface modified with sine wave amplitudes, but no lances or louvers.
   d. **Lanced/Louvered.** A surface modified with raised lances or louvers.

II. **Slab:** An independent tube coil assembly or module, used for heat transfer between refrigerant and air. For example, an A Coil consists of two (2) slabs; a pleated coil has three (3) or more slabs.

III. **Active Tubes:** Tubes in the slab intended to carry refrigerant.
APPENDIX F – SETUP, COMMISSIONING AND OPERATING CHECKLIST

FOR LABORATORY PERSONNEL

Setup Checklist and Operating Procedures for the Laboratory Personnel:

1. Verify that the nameplate model is the same as the AHRI requested model.
   a. Check if there are additional comments in the data.
2. Follow the manufacturer’s installation instructions and related drawings (manufacturer representative may be present).
   a. Charging instructions.
      i. For heat pumps, determine the IRV of the test coil from the Directory. Follow the System Manufacturer’s charging instructions for a coil (whether ICM or a different System Manufacturer coil) with the closest IRV. If no instructions are available, consult the coil manufacturer for specific charging instructions.
   b. Tubing sizing.
   c. Airflow tap settings.
   d. Expansion device. If there is a use of a TXV, ensure there is insulation on the bulb. Check that the bulb is attached and positioned correctly.
   e. Verify all enhancements per the rating are installed properly (e.g. demand defrost board, liquid line solenoid, TXV, time delay relay).
   f. Note any deviation from the Participant’s published installation instructions.
   g. Verify that the unit is physically installed per the installation instructions.
3. Verify that the ductwork meets ASHRAE 37 requirements.
4. Inspect indoor ductwork for leaks.
5. Verify that the indoor coil is sitting in the housing and is positioned correctly.
6. Inspect the trap for condensate is clear of obstructions and check if the condensate is leaving.
7. Verify that the correct nozzles are selected for the given airflow range.
8. Verify that the voltage to be applied matches the voltage listed on nameplate.
9. Verify major components are of compatible voltage.
10. Compare the indoor fan watts against known values (if available).
11. Verify installation to the manufacturer’s supplemental checklist (if available). (AHRI shall approve)
12. Verify the refrigerant line length between Outdoor and Indoor Units against the manufacturer’s published installation instructions.
13. Verify airflow rates of Indoor Units.

Additional Procedures and Checks Following a Failure:

1. For high stage and low stage compressor operation:
   a. Indoor (ID) airflow;
   b. ID watts;
   c. ID static;
   d. Outdoor (OD) airflow if OD air is the secondary check or refrigerant mass flow;
   e. OD watts on fan motor;
   f. Compressor watts;
   g. Sub-cooling and superheat; and
   h. Liquid temperature.
2. Record the temperatures leaving the circuits.
3. Photos of test setup.
4. ID airflow speed tap. List all speed tap changes.
5. Time between defrost.
6. Report any error messages or abnormally flashing lights.
7. Last date that the LEAP was conducted.
APPENDIX G – COIL GEOMETRY SCREENING

1. Information regarding the mixed Indoor Unit may be verified by the matched System Manufacturer.

2. Single-Speed & Single-Stage Mixed Coil Requirements
   
   A. ICM ratings shall be subject to the flowchart shown in Figure G1, G2 and G3.
   
   B. If the sample’s ratings pass the criteria of the flowchart, the ratings are subject to the coil geometry screening program. The program shall generate a rating based on submitted data from the ICM. This rating is then compared with the System Manufacturer’s inputted data. The ratings of the mixed coil shall not exceed 6% of the output rating generated by the coil geometry screening program.
   
   C. Participants have the option to perform an AHRI test at the Laboratory in addition to their yearly testing requirements, to add a rating that does not meet the aforementioned criteria.
Figure G1: Part 1 of the ORNL Flowchart
Figure G2: Part 2 of the ORNL Flowchart
Calculate Face Area Ratio SEER Effect:
\[ \frac{\text{Face Area Ratio} - 1}{10} \]
[10% Face Area = 1% SEER]

Calculate Fin Per Inch difference:
\[ \text{ICM EvapFinPerInch} - \text{Systems EvapFinPerInch} \]

Calculate Fin Per Inch difference SEER Effect:
\[ \frac{\text{Fin Per Inch Difference}}{200} \]
[2 FPI = 1% SEER]

Calculate Flow Control Difference:
\[ \text{ICM Flow Control Value} - \text{Systems Flow Control Value} \]

Determine Flow Control Difference SEER Effect from chart

Calculate Total SEER effect:
\[ \text{Face Area Ratio SEER Effect} + \text{Fin Per Inch Difference SEER Effect} + \text{Flow Control Difference SEER Effect} \]

Calculate SEER difference:
\[ \text{System SEER} \left(1 + \text{Total SEER effect}\right) / \text{ICM Rated SEER} \]

Figure G3: Part 3 of the ORNL Flowchart
APPENDIX H – CERTIFICATION OF MODELS RATED WITH INTERNATIONAL RATING CONDITIONS

Certification of models rated with International Rating Conditions shall be certified using the USE OM and the GOM, with the following exceptions:

H1 Basic Model Groups (BMGs). See Section 1.5.

H1.1 BMG Division. A participant may choose to either list products at domestic rating conditions, international rating conditions, or both using the following options:
- Domestic and International Rating Conditions. The product shall share one BMG at both Domestic and International Rating Conditions.
- Domestic Rating Conditions. The product shall have one BMG at Domestic Rating Conditions.
- International Rating Conditions. The product shall have one BMG at International Rating Conditions.

H2 Annual Testing Requirements.

H2.1 System Manufacturers and ICM. 20% of a Participant's BMGs certified to International Rating Conditions shall be tested annually, with a minimum of one (1) model. Fractional numbers shall be rounded to the nearest whole number using traditional rounding methods.

H2.3 BMG Models with AHRI Standard Ratings and International Ratings. BMGs that have certified ratings at both the AHRI Standard Rating Conditions and International Rating Conditions shall be counted only once, under BMGs with AHRI Standard Rating Conditions.

H3 Certified Data at International Rating Conditions. The participant shall certify the performance rating at one or more of the international rating conditions, as specified in Table 14 of AHRI Standard 210/240-2017. The participant may further choose to certify additional operating conditions specified in Table H1. Certification tests shall be conducted at all conditions at which the participant certifies the equipment.

H3.1 Unitary Small Air-Conditioners (Systems and Mixed-Match Coils), Under 65,000 Btu/h [19,000 W].
- Cooling Capacity at T1, T2, and/or T3, Btu/h; as applicable;
- Energy Efficiency Ratio (EER$_{T1}$, EER$_{T2}$, EER$_{T3}$) T1, T2, and/or T3, Btu/W·h, and Coefficient of Performance (COP$_{T1}$, COP$_{T2}$, COP$_{T3}$) at T1, T2, and/or T3, W/W; as applicable; and
- Extra High Temperature Operating Requirement, as applicable.

H3.2 Unitary Small Air-Source Heat Pumps (Systems and Mixed-Match Coils), Air-Cooled under 65,000 Btu/h [19,000 W].
- Cooling Capacity at T1, T2, and/or T3, Btu/h; as applicable;
- Energy Efficiency Ratio (T1, T2, and/or T3, Btu/W·h, and Coefficient of Performance (COP$_{T1}$, COP$_{T2}$, COP$_{T3}$) at T1, T2, and/or T3, W/W; as applicable;
- Heating Capacity at H1, H2, and/or H3, Btu/h; as applicable;
- Coefficient of Performance (COP$_{H1}$, COP$_{H2}$, COP$_{H3}$) at H1, H2, and/or H3; as applicable; and
- Extra High Temperature Operating Requirement, as applicable.

H4 Optional Operating Requirements. Participant may choose to optionally certify equipment to the conditions for the operating tests specified in Table H1. The requirements of the optional operating condition tests are specified below.
H4.1 **Extra High Temperature Operating Requirement.** Unitary Air Cooled Air-Conditioners and Heat Pump Equipment shall pass the following extra high temperature operating condition test with an indoor-coil at the T3 condition airflow rate.

H4.1.1 **Temperature Conditions.** Temperature conditions shall be maintained as shown in Table H1 ± 1.0°F [0.6°C].

H4.1.2 **Voltages.** Tests shall be run at the unit’s rated voltage ± 2%.

H4.1.3 **Procedure.** Unitary Air Cooled Air-Conditioners and Heat Pump Equipment shall operate continuously at full capacity for 2 hours at the temperature conditions and voltage(s) specified above.

H4.1.4 **Requirements.** During the test, the equipment shall operate without failure of any of its components.

<table>
<thead>
<tr>
<th>TEST</th>
<th>INDOOR SECTION</th>
<th>OUTDOOR SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry-Bulb °F</td>
<td>Wet-Bulb °F</td>
</tr>
<tr>
<td>Indoor Section Temperature</td>
<td>(°C)</td>
<td>(°C)</td>
</tr>
<tr>
<td>Extra High Temperature Operating Conditions</td>
<td>80.0 [26.7]</td>
<td>67.0 [19.4]</td>
</tr>
</tbody>
</table>

Note:
1. The wet-bulb temperature condition is not required when testing air-cooled condensers which do not evaporate condensate.

H5 **Publication of Ratings at International Rating Conditions in Certified Directory.** The following information pertaining to each model certified shall be published in the Directory:

- AHRI Certified Reference Number;
- Model Status;
- Brand Name;
- Series Name;
- Model Number(s) or Designation(s);
- AHRI Type;
- Refrigerant;
- Standard Rating Cooling Capacity at T1 (CoolingCapacity\(_{T1}\)), Btu/h (W); if applicable;
- Standard Rating Cooling Capacity at T2 (CoolingCapacity\(_{T2}\)), Btu/h (W); if applicable;
- Standard Rating Cooling Capacity at T3 (CoolingCapacity\(_{T3}\)), Btu/h (W); if applicable;
- Energy Efficiency Ratio at T1 (EER\(_{T1}\)), Btu/W-h and Co-efficient of Performance at T1 (COP\(_{T1}\)); if applicable;
- Energy Efficiency Ratio at T2 (EER\(_{T2}\)), Btu/W-h and Co-efficient of Performance at T2 (COP\(_{T2}\)); if applicable;
- Energy Efficiency Ratio at T3 (EER\(_{T3}\)), Btu/W-h and Co-efficient of Performance at T3 (COP\(_{T3}\)); if applicable;
- Standard Rating Heating Capacity at H1 (HeatingCapacity\(_{H1}\)), Btu/h (W); if applicable;
- Standard Rating Heating Capacity at H2 (HeatingCapacity\(_{H2}\)), Btu/h (W); if applicable;
- Standard Rating Heating Capacity at H3 (HeatingCapacity\(_{H3}\)), Btu/h (W); if applicable;
- Coefficient of Performance (COP\(_{H1}\)) at H1; if applicable;
- Coefficient of Performance (COP\(_{H2}\)) at H2; if applicable;
- Coefficient of Performance (COP) at H3; if applicable;
- Extra High Temperature Operating Requirement;
- Rated Full Load Indoor Coil Air Quantity at T1, SCFM; if applicable;
- Rated Full Load Indoor Coil Air Quantity at T2, SCFM; if applicable;
- Rated Full Load Indoor Coil Air Quantity at T3, SCFM; if applicable;
- Rated Full Load Indoor Coil Air Quantity at H1, SCFM; if applicable;
- Rated Full Load Indoor Coil Air Quantity at H2, SCFM; if applicable;
- Rated Full Load Indoor Coil Air Quantity at H3, SCFM; if applicable; and
- Frequency (Hertz)

H6  **Options Following First Sample Certified Rating Test Failure.** Failure options shall follow Section 3.18 for failing rating conditions (domestic, international, or both).

H6.1  **Options Following International Rating Condition Optional Operating Requirement Test Failure.** If the Participant’s model does not comply with an Optional Operating Requirement test, the model shall no longer be listed as compliant to the Optional Operating Requirement on the AHRI Directory and AHRI Certificate. The options below are only followed if a model does not fail other rating points.

Failure of Optional Operating Requirement test shall not result in a Penalty Test.

H6.1.1  **Options Following 1st Sample Failure**

- Accept non-compliance, the model shall no longer be listed as compliant to the Optional Operating Requirement on the AHRI Directory and AHRI Certificate; or
- Test second sample of the same model (sample must be available within the timeframe and procedure allotted in Section 3.18 following notification of decision); or
- Obsolete the model, which also obsoletes all models within the corresponding BMG. This option also accepts non-compliance.

H6.1.1  **Options Following 2nd Sample Failure**

- Accept non-compliance, the model shall no longer be listed as compliant to the Optional Operating Requirement on the AHRI Directory and AHRI Certificate; or
- Obsolete the model, which also obsoletes all models within the corresponding BMG. This option also accepts non-compliance.