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Executive Summary 
 
Optimized Thermal Systems, Inc. (OTS) was selected to work with the Air-Conditioning, 
Heating, and Refrigeration Institute (AHRI) and the associated Project Committee on Project 
8013: A Study of Methods to Represent Compressor Performance Data over an Operating 
Envelope Based on a Finite Set of Test Data. Work was conducted between August 2013 and 
February 2015. The project included a thorough review of the existing method to represent 
compressor performance data for positive displacement compressors, currently outlined per 
ANSI/AHRI Standard 540-2004 (AHRI-540), and identify a new method(s), if appropriate, to 
account for system uncertainties and existing errors in data representation. 
 
Multiple factors contribute to inaccuracies with the current AHRI-540 methods including 
measurement uncertainty, regression uncertainty, compressor to compressor variation, and 
operation outside of the normal operating envelope (extrapolation). An improvement in the 
method for representing data will likely enable an improvement in the accuracy of the product 
ratings without increasing the cost of generating the data.  
 
In order to analyze the existing data representation method and evaluate potential alternatives, 
members of the project committee provided as many raw compressor data sets as feasible. These 
were used to conduct an uncertainty analysis, assess the accuracy of the AHRI-540 method, 
assess the accuracy of four identified alternative methods, evaluate the effect of sample size, and 
evaluate the effect of superheat.  
 
In addition to the request for raw compressor data, participating project committee manufacturers 
were asked a series of questions regarding their practices and procedures in testing compressors 
and developing a representative compressor performance map from the collected data. Most 
manufacturers indicated that more than fourteen test points were used to develop their 
compressor maps (a minimum of eleven points are needed to develop the AHRI-540 10-
coefficient model). Most manufacturers also account for unit to unit variation, testing at least 
three separate units of the same compressor model. But of those surveyed, all manufacturers 
indicated that testing is performed as close to the operating envelope as possible and that no 
validation is conducted for any extrapolated data points. 
 
Prior to completing any analyses, a comprehensive literature review was conducted to identify 
alternative compressor models and data representation methods. Four models in addition the 
AHRI540 baseline method were selected for review and analysis. These included a variation of 
the AHRI540 model (MPOLY) and models as presented by Qiao et al. (2014) [QIAO], Jahnig et 
al. (1999) [KLEIN], and Navarro et al. (2007) [EMILIO]. 
 
Before the alternative methods were evaluated, a regression uncertainty analysis was conducted 
using a Monte Carlo simulation method. Results showed that the average uncertainty in mass 
flow rate prediction can be as high as 4% and that in power prediction can be as high as 5%. The 
worst case maximum absolute error in predicted mass flow rate across all data sets was 17% and 
that for power was 9%. Error in predicted power and mass flow rate is higher for larger capacity 
compressors. For most compressors, the high errors occur in the region of the envelope with low 
suction and low discharge dew point temperatures.  



Three data sets were available for comprehensive comparison of the AHRI540 model predictions 
over the entire operating envelope and beyond (for extrapolation). It was observed that within the 
operating envelope, the AHRI540 model predicted the mass flow rate and power within an 
average error of 1%. But for extrapolated areas, (10°F outside the operating envelope on suction 
and discharge dew point), the worst case errors were as high as 9% in power and 8% in mass 
flow prediction. This indicates that the AHRI540 performance map is not suitable for 
extrapolation purposes. 
 
In reviewing the AHRI540 baseline model and the selected alternatives, the accuracy in 
predicting behavior varied significantly. For most of the data sets, the average errors in mass 
flow rate prediction were better than 2% and the maximum absolute errors were of the order of 
2.5% for the AHRI540, MPOLY and QIAO models. The KLEIN and EMILIO models resulted 
in average errors in mass flow rate predictions on the order of 3%, but the maximum errors were 
more than 7%. In the case of power prediction, the AHRI540 and MPOLY models showed 
average errors of 3%, the QIAO model had errors around 4%, and the KLEIN and EMILIO 
models exhibited errors greater than 15%. Error metrics were also analyzed with regards to 
compressor type, compressor capacity and refrigerants. In general, the QIAO and the MPOLY 
models were found to be more suited for rotary and reciprocating compressors than scroll 
compressors. 
 
In addition to reviewing the models for accuracy in predicting power and mass flow rate, a study 
of sampling method considering different sample sizes and multiple sampling methods was 
conducted. This analysis was presented with several challenges, particularly since the 
compressor operating envelope is a non-rectangular domain. A sampling method using Latin 
Hypercube Design (LHS) and a proposed alternative sampling method based on design of 
experiments (PDOE) were evaluated. In general, both the LHS and PDOE methods yielded 
similar errors in mass flow rate for all models for samples sizes of 12, 14 and 16. Thus, for mass 
flow rate, it is possible to build a model with 12 systematically selected test points. For power 
prediction, the average error for the LHS and PDOE methods using AHRI540, QIAO and 
MPOLY was lower than 2% for all sample sizes. The KLEIN and EMILIO models exhibited 
significantly higher errors.  
 
Lastly, a study on the effect of superheat was conducted. In general, the error in predicted mass 
flow rate for superheat values different than the map superheat has a strong correlation with the 
ratio of suction densities. The same is true for errors in power prediction, except for the QIAO 
model. The Dabiri and Rice (1981) superheat correction was found to work well for the 
AHRI540 map. The QIAO model shows good average prediction, but very high maximum 
errors. The AHRI540 model produces the best predictions in power for alternate superheat cases, 
however, even better than the corrected model. All of the other models exhibit significantly high 
errors making them unusable for any prediction task. 
 
Based on the results of the analysis conducted for this Project, the following conclusions are 
drawn: 
 

1. Reducing the measurement uncertainty is important. Particular attention must be paid for 
measurements involving low suction and low discharge dew point temperatures. 



2. The regression uncertainty has an additive effect on the overall model prediction when 
the measurement uncertainty is factored into the overall model uncertainty. 

3. In order or reduce the regression uncertainty, numerically stable and linearly regressed 
models should be selected. 

4. There is potential for reducing the number of tests used to develop the performance map 
for a compressor.  

5. The use of a systematic design of experiments (DOE) method is recommended for 
selection of samples once an operating envelope is determined. Adaptive DOE methods 
are available in the literature that can improve model accuracy for the same number of 
tests. 

6. It is possible to develop a test matrix with less than 16 points that will also be suitable for 
different superheat values and for reasonable extrapolation. Such a test matrix would 
involve tests at multiple suction superheat values. Evaluating this approach is 
recommended for future work. 
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Nomenclature 
Symbol Definition 

a1 – a18 Regression coefficients 

b1 – b9  Regression coefficients 

d, e Regression coefficients 

f Regression coefficient / frequency 

C Clearance volume ratio 

h Enthalpy 

k Isentropic exponent 

ሶ݉  
 

Mass flow rate 

m Polytropic exponent 

n Polytropic exponent 

p Pressure 

T Temperature 
ሶܸ  

 

Volume flow rate 

V Swept volume 

Greek Symbols  

 ߙ
 

Loss factor 

 ߜ
 

Dimensionless diameter/small fraction of the property 

 ߩ
 

Density 

∅ 
 

Normalized frequency 

߮ 
 

Pressure ratio 

 ߴ
 

Specific volume 

 ߟ
 

Efficiency 

Subscripts  

amb Ambient 

comb Combined 

comp Compressor 

c, cond Condenser 

dis, ex Discharge / Exit / Outlet 

e, evap Evaporator 

isen Isentropic 

loss0 Constant Loss 

mech Mechanical 

nominal  Nominal 
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su, suc, suction, in Compressor Suction / Inlet 

sh Compressor Shaft 

vol Volumetric  

Acronyms  

AAPE Average Absolute Percent Error 

AHRI Air-Conditioning, Heating and Refrigeration Institute 

COP Coefficient of Performance 

COV Coefficient of Variance 

DOE Design of Experiments 

EMILIO Method proposed in Navarro et al. (2007) 

HVAC&R Heating, Ventilation, Air-Conditioning, and Refrigeration 

KLEIN Method proposed in Jahnig et al. (1999) 

LHS Latin Hypercube Design / Sampling 

MAEP Maximum Absolute Error Percent 

MAPE Maximum Absolute Percent Error 

MPOLY Variation of AHRI Standard 540 Method 

OTS Optimized Thermal Systems, Inc. 

PDOE Polygon Design of Experiments 

QIAO Method proposed in Qiao et al. (2014) 

RPM Revolutions Per Minute 

RRMSE Relative Root Mean Square Error 
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1 Introduction 

In August 2013, the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) solicited 
proposals for Project 8013: A Study of Methods to Represent Compressor Performance Data 
over an Operating Envelope Based on a Finite Set of Test Data. The project was to include a 
thorough review of the existing method to represent compressor performance data for positive 
displacement compressors, currently outlined per ANSI/AHRI Standard 540-2004, and identify a 
new method(s) to account for system uncertainties and existing errors in data representation. 
Optimized Thermal Systems, Inc. (OTS) was selected to complete the compressor performance 
data study. This report summarizes the findings and recommended outcomes of the project. The 
original project scope of work is outlined in Appendix A. 

2 Background 

The current performance rating standard for positive displacement compressors requires 
manufacturers to report tabular performance data over a specified operating envelope. The data is 
usually generated using a 10-coefficient third order polynomial equation. The coefficients for the 
equation are derived from measured and/or extrapolated values using the method of “Least 
Squares”. This equation is also frequently used by manufacturers to represent the tabular data in 
a form suitable for use in simulation programs.  
 
The original intent of this reporting method was to provide a consistent and uniform way of 
presenting performance data to enable manufacturers to evaluate different compressors for a 
particular application. Manufacturers also desire to use compressor performance with simulation 
tools to calculate system performance values for rating purposes. The current equation that is 
used to represent the data does not, however, always provide sufficient accuracy to meet the need 
for product rating. 
 
A number of factors contribute this inaccuracy. One source of uncertainty, for example, is the 
skewing and shifting of the data based curve to go through the two primary air conditioning 
rating points. There is no certification of the final curve other than the two rating points, so 
significant errors may be generated throughout the remainder of the map. Due to the costs 
involved with collecting the measured data, there is a desire to use the fewest number of data 
points. No specific information is provided to understand the impact of the number and 
distribution of measured test points to achieve a particular level of accuracy. Other sources of 
uncertainty are associated with the variation of measurement reproducibility across the 
application envelope as well as the compressor to compressor variation. An improvement in the 
method for representing data will likely enable an improvement in the accuracy of the product 
ratings without increasing the cost of generating the data.  

3 Project Objectives 

The purpose of this project is to improve the method used to represent compressor data and to 
quantify uncertainty. It will advance the state of the art by providing a comparison of the 
accuracy of different methods to represent the data and a methodology for quantifying the 
resulting accuracy for a specific application to better understand requirements for rating 
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accuracy. A statement of expected accuracy for compressors would be useful in arguments over 
certification and enforcement tolerances. This study should also provide information to help 
define future work based on the difference between the resulting levels of accuracy and desired 
levels. 
 
Specifically, the objectives for this project include:  
 

1. Determine the optimal method to represent performance data over the application 
envelope, which maximizes accuracy for a given number of test points; and,  
 

2. Develop an estimate of the level of uncertainty in each method as a function of 
measurement reproducibility and/or product to product variation especially at the 
typical rating points given in the standard. 

4 Test Data Used for Analysis 

In order to evaluate the current method of developing a representative compressor performance 
map from experimental data, member companies of the project committee provided raw 
compressor data, published coefficient information, and information on the methodologies used 
to test compressors and develop representative performance maps. An overview of the requested 
and collected data, as well as the responses received on the manufacturer survey are presented in 
the subsections below. 

4.1 Raw Compressor Data 

The existing AHRI Standard 540 includes single and variable positive displacement compressors 
for five different applications. In order to conduct a comprehensive review of the effectiveness of 
the existing method, data for the full reach of the Standard was requested. The ideal data set for 
project analysis consists of every possible combination of the parameters presented in Table 1. 
 

Table 1: Ideal Compressor Data Set 

Compressor Type Application Refrigerant Capacity 

Reciprocating Air cooled A/C & HP Pure fluid (eg.:R134a) Low 

Rotary Evap cooled A/C & HP Mixture (eg.:R410A) Medium 

Scroll Water cooled A/C & HP  High 

Screw Refrigeration   

 
Members of the project committee provided as many raw compressor data sets as feasible. 
Actual data sets collected and used for the analysis of this project are summarized in Table 2. 
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Table 2: Received Data Set Used for Project Analysis 

Compressor 
Type 

Application Refrigerant 
Capacity Range 

[Btu/hr] 
Number of 
Data Sets 

Number of 
Units Per 

Model 

Reciprocating A/C & HP R410A 2,285 – 65,099 9 2-3 

Reciprocating A/C & HP R22 5,075 – 36,079 2 3 

Scroll A/C & HP R410A 6,013 – 776,125 8 1 

Rotary A/C & HP R410A 3,838 – 44,427 2 1 

Rotary A/C & HP R134a 1,523 – 18,695 2 1 

Rotary A/C & HP R407C 4,813 – 20,851 1 1 

Reciprocating Low Temp R404A 1,816 – 10,331 1 1 

Reciprocating High Temp R407C 5,611 – 40,906 1 1 

Reciprocating High Temp R134a 2,929 – 12,739 1 1 

Reciprocating Medium Temp R404A 2,564 – 13,483 1 1 

Scroll Low Temp R404A 4,844 – 19,970 1 1 

Screw A/C & HP R134a 

Too few data points to perform fitting. AHRI 
coefficients not provided. 

Reciprocating Medium Temp R410A 

Reciprocating Low Temp R134a 

Reciprocating Low Temp R404A 

Total complete data sets available for analysis : 29 

 
As can be seen from the table, data received accounted for three types of compressors 
(reciprocating, rotary and scroll) over a complete capacity range for both pure fluids (R134a and 
R22) and mixed refrigerants (R404A and R410A). Data for multiple compressors of the same 
model were also acquired to evaluate the impact of unit to unit variation. 
 
Prior to receiving data, OTS and the project committee agreed on the parameters to include and 
the format for each compressor data set. Data generally included compressor geometry, operating 
conditions (pressure, temperature, mass flow rate, superheat, etc.), performance, instrument 
uncertainties, and Standard 540 coefficients. A comprehensive list of the data points requested is 
provided in Appendix B.  
 
For some data sets, it was observed that there were differences between the provided coefficients 
and those calculated by OTS using the raw data provided. This is likely due to the exclusion of 
some raw data not identified to OTS. For purposes of analysis, if a difference in coefficients 
existed, the calculated coefficients from the raw data provided were used rather than the 
published coefficients. 
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Lastly, the data provided for R404A and R407C compressors was based on variable superheat as 
opposed to the constant (20°F) superheat for all other data sets. These were still included in the 
analysis. 

4.2 Manufacturer’s Survey  

In addition to the request for raw compressor data, manufacturers were asked a series of 
questions regarding their practices and procedures in testing compressors and developing a 
representative compressor performance map from the collected data. A list of the survey 
questions and a summary of the responses are included in Appendix C. OTS received input from 
a total of six manufacturers. 
 
While the number of responses received is statistically insignificant to draw any specific 
conclusions, input provided by the manufacturers regarding the methodology used to develop 
representative compressor performance maps provides some insight on the need for a review, 
and possibly replacement, of the existing standard.  
 
Manufacturers were asked about the number of test points used to generate the compressor map, 
including the number of test points used, the total number of tests conducted for a single 
compressor, and the number of units tested for the same model. Given that the AHRI Standard 
540 is a 10-coefficient model, the minimum number of test points required to generate a 
performance map would be eleven. Most manufacturers indicated that more than fourteen test 
points were used to develop their compressor maps. One manufacturer, however, indicated that 
only five to ten test points were used to generate a compressor map, which is mathematically 
challenging and will lead to further inaccuracies. Most manufacturers account for unit to unit 
variation, testing at least three separate units of the same compressor model. Two manufacturers 
responding to the survey indicated that only one or two units may actually be tested for 
developing map data. 
 
Determining the performance envelope is important in establishing a boundary for the collected 
data and understanding testing and operating limits. Manufacturers confirmed that the 
performance envelope is application specific. In order to aid in comprehensive analysis for the 
purposes of the study, the project committee assisted OTS in establishing appropriate envelope 
limits for each of the five applications included in Standard 540. 
 
One of the motivating concerns for the project was the potential for extrapolation and data 
shifting and understanding the impact this has on the accuracy of the compressor performance 
data representation. As such, manufacturers were asked about any extrapolation and/or data 
shifting practices. All manufacturers indicated that testing is performed over the full rating 
conditions, as close to the operating envelope as possible. No manufacturers test at or beyond the 
operating envelope and two manufacturers indicated that extrapolation is used for extremely high 
or low temperatures. No validation is conducted for any extrapolated data points. Another two 
manufacturers indicated that data can be skewed / shifted to the rating points by repeating the 
data for those points in the data reduction process. 
 
All of the manufacturers surveyed indicated that compressor testing is completed in house. 
Measurement accuracy, however, varied widely between the manufacturers such that a general 
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trend could not be identified. As such, measurement uncertainties for the uncertainty analysis 
presented in Section 5 uses the minimum required accuracies per ASHRAE Standard 23. 
 
Refrigerant purity surfaced as another manufacturer concern during early discussions of the 
project. When surveyed, responses were split. Three manufacturers indicated that refrigerant 
used for compressor testing was regularly replaced. The other manufacturers indicated that the 
refrigerant was not routinely checked, though all manufacturers use virgin refrigerant to the 
extent possible. 

5 Uncertainty Analysis and Results 

Correlations based on experimental data are widely used in the HVAC&R field. Common 
examples are the AHRI 10-coefficient compressor map, heat transfer and pressure drop 
correlations for various surfaces, etc. 
 
Experimental measurements involve uncertainty due to various sources and it is important to 
characterize the effect of measurement uncertainties on the regression coefficients (Coleman and 
Steele, 2009). This helps us to better understand the effect of measurement uncertainty on the 
values predicted by the compressor map and the corresponding uncertainty when the map is used 
for system rating. The uncertainty information can then be used in understanding the effect of 
tolerances used in the various rating and enforcement tests. 

5.1 Sources of Uncertainty 

The following are the sources of uncertainty in the performance rating/testing of manufactured 
products: 
 

a. Manufacturing/product tolerances 
b. Testing procedures 
c. Instrument accuracies (a.k.a. measurement uncertainty) 
d. Random uncertainty during testing (e.g., one unit tested repeatedly at the same lab) 
e. Testing location (variability between laboratories, testing the same unit) 

 
Table 3 below shows the various uncertainties and the type of data required to quantify these 
uncertainties. 

Table 3: Uncertainty types and data required for quantification 
No. Uncertainty Type Data Required for Quantification 

1. Measurement uncertainty (systematic) 
Measured data from the laboratory 
Instrument accuracies 
Data reduction procedure 

2. Measurement uncertainty (random) 
Multiple measurements (e.g., 30 second interval at 
steady state) 

3. Environmental uncertainty (random) 
Data for one unit tested repeatedly in the same 
laboratory under the same test setup 

4. Variability between laboratories (random) 
Data for one unit tested in multiple laboratories 
under the same test set up 

5. Manufacturing/product variation (random) 
Data for multiple units of the same model tested 
in the same laboratory under the same test setup 
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5.2  Systematic Uncertainty Analysis  

The typical data used in the map are measured temperatures, mass flow rate and power 
consumption. These are all measured quantities (and not derived) and hence no uncertainty 
propagation is required.  The uncertainty due to regression is analyzed in Section 5.3. 

5.3 Regression Uncertainty Analysis  

5.3.1 Overview 

Conventional uncertainty propagation is carried out using the Taylor series expansion method 
(Coleman and Steele, 2009). But such an approach is not applicable to the case where-in 
measured data (e.g., suction and discharge temperature, power, mass flow rate) are used as a part 
of regression to predict certain parameters of interest. Coleman and Steele (2009) describe an 
approach for one-input-one-output case using closed form expressions. Based on similar analysis 
expressions for regression uncertainty can be derived for 2-input-1-output case. An example of 
such a case is the prediction of compressor power based on the suction and discharge dew point 
temperatures. Such mathematically rigorous derivation is beyond the scope of this project and as 
such it is proposed to use the Monte Carlo simulation method. 
 
In the case of compressor testing, the measured quantities include, the suction and discharge dew 
point temperatures, the power consumption and the mass flow rate. The ASHRAE Standard 23 
provides the required measurement accuracies for these quantities. These accuracies are depicted 
in Table 4 below. 
 

Table 4: Measurement accuracies 
Quantity Accuracy 
Temperature 0.5°F 
Power 1% of measured value 
Mass flow rate 1% of the measured value 

 
During the course of actual experiments, there are random errors as well, which are included in 
the measurements, but are not quantitatively identified. 

5.3.2 Approach 

For the purposes of Monte Carlo analysis, the various measurement errors are assumed to be 
normally distributed with a mean value as the measured value reported in the data sets and the 
standard deviation as the accuracy value reported in the previous table. Theoretically speaking, 
the use of accuracy values as standard deviation is not advisable, since the actual standard 
deviation will be lower. But it is used here to account for the overall measurement uncertainties 
including both systematic and random errors. 
 
Furthermore, conducting the Monte Carlo analysis with lower values of the standard deviation 
will not change the location of the points with highest and lowest prediction errors on the 
compressor operating envelope (plot of Te and Tc). 
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In order to determine the number of simulation runs required for a good estimate of the mean and 
standard deviation, the Monte Carlo analysis was carried out for several datasets with a varying 
number of simulation runs ranging from 1000 to 100,000. Results are depicted in Table 5 below. 

Table 5: Effect of simulation runs in Monte Carlo analysis 
Simulation 

Run 
Count 

Power 
Error in 

Mean [%] 

Power 
COV 
[%] 

Mass flow rate 
Error in Mean 

[%] 

Mass flow 
rate 

COV [%] 
1,000 0.1285 0.5611 0.7841 0.7000 
5,000 0.1660 0.5679 0.7489 0.7145 
10,000 0.1582 0.5606 0.7751 0.7077 
20,000 0.1685 0.5636 0.7748 0.7135 
50,000 0.1640 0.5648 0.7813 0.7157 
100,000 0.1673 0.5655 0.7720 0.7164 

 
The case with 100,000 runs takes approximately 30 minutes. Based on the results of these 
parametric runs and the computation, it was decided to use 25,000 runs for the Monte Carlo 
analysis as it offered a good trade-off between the accuracy (two decimal places) and 
computation time. 
 
The following steps describe the Monte Carlo simulation carried out for each data set. Assume 
that there are 50 data points in the data set. 
 

1. Generate 25,000 data sets, based on normal distribution, each comprising of 50 data 
points. 

2. Develop regression model (curve fit) for each data set, based on the 10-coefficient 
polynomial. One model each is developed for power consumption and mass flow rate, as 
a function of Te and Tc. 

3. Predict each point in the original dataset using the regression models. Thus, for each of 
the 50 points, we will have 25,000 predicted values for power consumption.  

4. Compute the mean and the standard deviation of these 25,000 predicted values. The 
difference between this mean value and the measured value is termed as the Error in 
Mean. The ratio of the standard deviation and the mean is termed as the coefficient of 
variance (COV). 

5. For each of those 25,000 predicted values, we can also compute the individual errors, i.e., 
difference between predicted power consumption at that point (i.e., [Te,Tc])  and the 
measured value. The maximum absolute percent error can then be computed for each of 
these 50 points. 

6. The error in mean and the maximum absolute error can then be plotted on [Te,Tc] plot 
representing the compressor operating envelope. Thus for each compressor dataset, we 
can generate four plots (i.e., 2 each for mass flow rate and power consumption). 

5.3.3 Results 

This section presents the results for the Monte Carlo analysis. Instead of showing all 176 plots 
developed through the analysis, only a subset of the plots are shown here. The shading scale is 
maintained consistent across all the error plots for consistency and ease of interpretation. 
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The detailed error metrics, along with the number of available data points in each data set, are 
included in Table 6. The same information is also presented in Figures 21 and 22. The columns 
in Table 6 should be interpreted as follows: 
 

 Max. Error in Mean – This is the maximum error over the entire operating envelope in 
the mean value of mass flow rate (or power). 

 COV [%] – This is the Coefficient of Variance, and is the standard deviation expressed as 
a percentage of mean. Lower COV is better. 

 MAPE – This is the maximum absolute percent error and indicates the worst case 
prediction error in mass flow rate (or power) over the entire operating envelop. 

 
Based on the error metrics and the individual analysis of each of the 176 plots, the following 
general conclusions can be drawn: 
 

1. The minimum absolute error in the predicted mean power is 0.2% and the maximum 
error in the predicted mean power is 5% (neglecting the R410A outlier, at 12%). The 
maximum COV is 1.7%. 

2. The minimum absolute error in predicted mean mass flow rate is 0.4% and the maximum 
error in the predicted mean mass flow rate is 4.3%. The maximum COV is 3.5%. 

3. The worst case maximum absolute error in predicted power is 9%. 
4. The worst case maximum absolute error in predicted mass flow rate is 17%. 
5. In general, the maximum (worst case) errors in mass flow rate prediction are much higher 

than those in power prediction. 
6. For most compressors, the highest errors occur in Quadrant-3, i.e., low suction dew point 

and low discharge dew point region. These are the compressors that have “sufficient” 
number of data points distributed across the entire operating envelope. 

7. Refrigerants R134a, R404A and R407C exhibit higher errors compared to R410A, but the 
corresponding datasets do not have ‘sufficient’ points to begin with. As such these errors 
could be due to insufficient data available for regression. 

8. Larger compressors (i.e., high power and mass flow rate values) exhibit higher errors. 
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Figure 1: R22 Compressor, error in mean mass flow rate 

 

 
Figure 2: R22 Compressor, maximum absolute percent error in mass flow rate 
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Figure 3: R22 Compressor, error in mean power 

 

 
Figure 4: R22 Compressor, maximum absolute percent error in predicted power 
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Figure 5: R134a Compressor, error in mean mass flow rate 

 

 
Figure 6: R134a Compressor, maximum absolute percent error in predicted mass flow rate 
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Figure 7: R134a Compressor, error in mean power 

 

 
Figure 8: R134a Compressor, maximum absolute percent error in predicted power 
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Figure 9: R404A Compressor, error in mean mass flow rate 

 

 
Figure 10: R404A Compressor, maximum absolute percent error in predicted mass flow rate 
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Figure 11: R404A Compressor, error in mean power 

 

 
Figure 12: R404A Compressor, Maximum absolute percent error in predicted power 
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Figure 13: R407C Compressor, error in mean mass flow rate 

 

 
Figure 14: R407C Compressor, maximum absolute percent error in predicted mass flow rate 
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Figure 15: R407C Compressor, error in mean power 

 

 
Figure 16: R407C Compressor, maximum absolute percent error in predicted power 
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Figure 17: R410A Compressor, error in mean mass flow rate 

 

 
Figure 18: R410A Compressor, maximum absolute percent error in predicted mass flow rate 
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Figure 19: R410A Compressor, error in mean power 

 

 
Figure 20: R410A Compressor, maximum absolute percent error in predicted power 
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Table 6: Monte Carlo simulation results 
Fluid Test 

Points 
Power 

Max. Error 
in 

Mean 
[%] 

Power 
COV 
[%] 

Power 
MAPE 

[%] 

Mass Flow 
Max. Error 

in 
Mean 
[%] 

Mass flow 
COV 
[%] 

Mass flow 
MAPE 

[%] 

R134a  17 1.09 1.18 5.82 1.12 1.82 9.03 
R134a  17 0.56 1.25 6.00 0.80 2.10 12.49 
R134a  17 1.87 1.29 6.16 0.68 2.00 9.21 
 R22  48 0.63 0.77 3.31 0.96 1.39 6.87 
 R22  48 0.98 0.79 3.78 2.81 1.50 7.54 
 R22  49 0.64 0.76 3.73 1.40 1.44 7.15 
 R22  48 0.38 0.76 3.06 0.67 1.39 6.22 
 R22  49 0.56 0.75 3.57 0.75 1.28 6.22 
 R22  49 0.45 0.74 3.74 4.33 1.19 9.03 
R404A  17 2.04 1.53 8.60 3.16 2.55 16.08 
R404A 22 3.38 1.21 7.66 2.23 1.94 8.98 
R404A  21 2.27 1.31 7.62 1.70 2.50 13.02 
R407C  19 0.76 1.22 5.86 4.36 2.28 15.31 
R407C  18 2.81 1.46 7.31 4.19 2.36 14.02 
R410A  21 5.09 1.27 7.07 1.13 1.90 7.77 
R410A  16 0.21 1.09 5.03 1.89 1.92 10.27 
R410A  16 0.88 1.73 9.10 1.88 3.51 17.40 
R410A  17 0.75 1.31 5.86 0.98 2.62 12.65 
R410A  17 2.52 1.47 7.25 1.67 2.98 13.01 
R410A  21 1.44 1.32 5.63 2.79 2.05 13.51 
R410A  19 0.41 1.13 4.94 0.41 1.54 6.72 
R410A  20 12.28 1.12 15.37 3.06 1.48 7.01 
R410A  22 0.34 1.15 6.06 0.99 1.71 8.23 
R410A  21 1.19 1.16 6.60 0.59 1.57 7.58 
R410A  23 0.90 1.21 5.99 0.47 1.64 8.68 
R410A  21 1.34 1.15 5.50 0.73 1.58 7.70 
R410A  49 1.17 1.28 6.16 1.47 2.90 12.96 
R410A  50 0.79 1.03 5.10 1.61 2.22 11.16 
R410A  49 1.40 1.05 5.12 2.20 2.46 11.33 
R410A  49 0.71 0.80 3.54 0.79 1.17 5.55 
R410A  49 0.52 0.78 3.44 0.72 1.22 5.45 
R410A  50 0.62 0.76 3.95 1.78 1.26 6.97 
R410A  49 0.86 1.04 5.02 1.96 2.57 11.97 
R410A  47 1.09 1.14 4.55 2.28 2.51 12.01 
R410A  48 0.36 0.87 3.83 1.70 1.98 9.13 
R410A  52 0.63 0.77 3.58 2.15 1.66 7.89 
R410A  52 0.48 0.84 3.89 3.53 1.78 9.38 
R410A  52 0.54 0.88 4.05 3.09 1.84 8.46 
R410A  49 0.37 0.79 3.38 0.65 1.25 5.88 
R410A  49 0.36 0.80 3.78 1.00 1.25 6.23 
R410A  49 1.14 0.79 3.36 1.07 1.22 6.66 
R410A  48 0.70 0.80 3.59 0.47 1.22 5.76 
R410A  48 0.76 0.79 3.83 0.59 1.19 5.33 
R410A  48 0.91 0.81 3.96 0.96 1.26 5.87 
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Figure 21: Monte Carlo results for power for different compressors 
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Figure 22: Monte Carlo simulation results for mass flow rate 
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5.4 Uncertainty Analysis Summary and Main Findings  

A Monte Carlo analysis was carried out to estimate the uncertainty due to regression and 
instrument accuracies in the predicted compressor power and mass flow rate. The main findings 
are as follows: 
 

1. The uncertainty due to regression and instrument accuracy in predicted power can be as 
high as 5%. 

2. The uncertainty due to regression and instrument accuracy in predicted mass flow rate 
can be as high as 4.3%. 

3. Large errors occur in the region of low suction dew point temperature and low discharge 
dew point temperature. 

4. No conclusion can be drawn with regards to the refrigerants since the different data sets 
do not use the same number of test points. 

5. The error in predicted power and mass flow rate is higher for large capacity compressors 
(i.e., high power and high mass flow rate). 

6 Proposed Methods  

In addition to understanding the sources of uncertainty in developing a compressor performance 
map, the major goal of the project is to determine the optimal method to represent performance 
data over the application envelope, while maximizing accuracy for a given number of test points. 
The following section outlines the need for an alternative method to the existing Standard 540, a 
background on other compressor models and data representation methods, and an overview of 
the analysis completed for the selected alternative methods evaluated for this project. 

6.1 Literature Review 

In general, compressor models can be categorized as map-based models, efficiency-based 
models and detailed or finite volume models: 

 
1. Map-based models: Such models rely on manufacturer published data, such as the one 

used in AHRI Standard 540-2004. Extrapolation can result in significant prediction 
errors. 

2. Efficiency-based models (Winkler, 2009): These models are based on first principles 
compression processes and may use varying isentropic and volumetric efficiencies. These 
models generally need to be tuned against measured data, but are capable of 
extrapolation, since they are physics-based. 

3. Detailed / Finite Volume Models (Prakash and Singh): These models divide the 
compressor volume into distinct regions, which need accurate geometric description. The 
fluid conservation equations (continuity, momentum and energy) are then integrated over 
the entire compressor domain and an energy balance for the refrigerant inside the 
compressor is computed iteratively for every time step. These models are very 
comprehensive and accurate, but are time consuming are not generally suitable for 
performance characterization. 
 

In order to identify alternative data representation methods, OTS conducted a comprehensive 
literature review of past research conducted for each of the above outlined models. Pertinent 
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findings and promising methods are summarized herein and are presented in chronological order. 
A summary of those methods selected for analysis and comparison against AHRI Standard 540 is 
presented in the following Section 7.3.  
 
Prakash and Singh (1974) proposed a detailed mathematical model for reciprocating compressors 
that formulates the thermodynamic processes describing the successive states the refrigerant 
undergoes in three distinctly divided control volumes of the compressor: cylinder working space, 
suction manifold and associated piping, and discharge manifold and associated piping. First and 
second law analyses are performed that result in coupled partial differential equations, the 
solution of which may be obtained by the finite difference method. The inherent difficulty with 
this and other finite volume approaches (Chen et al.) is that a set of coupled partial differential 
equations need to be solved, which is computationally expensive and time intensive.  
 
Staley et al. (1992) proposed an empirical model for R-12 positive displacement compressors, 
which predicts the data with which the coefficients were calculated within an error of 0.4% and 
with a standard deviation of 0.17%, for both mass flow rate and power outputs: 
  
 ݂ሺ ௖ܶ, ௘ܶሻ ൌ 	 ሺܣ ൅ ܤ ௘ܶ ൅ ܥ ௘ܶ

ଶሻ ൅ ሺܦ ൅ ܧ ௘ܶ ൅ ܨ ௘ܶ
ଶሻሺ ௖ܶሻ

൅ ሺܩ ൅ ܪ ௘ܶ ൅ ܫ ௘ܶ
ଶሻሺ ௖ܶ

ଶሻ 
7.2.1

 
Jahnig et al. (1999) proposed a semi-empirical model to represent the performance of hermetic 
compressors used in domestic refrigeration applications. Their model proposes equations to 
calculate the mass flow rate and the power consumption with the assumption of a polytropic 
process, but uses parameters obtained from curve-fitting the data to achieve a relative error of 
approximately 1%. The equation for mass flow rate is: 

 
 

ሶ݉ ௖௔௟௖ ൌ 	ቐ1 െ ܥ ቎ቆ
௖௢௡ௗ݌
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ቇ

ଵ
௞
െ 1቏ቑ .

ܸ. ܯܴܲ
.௦௨௖௧௜௢௡ߴ 60

 7.2.2

 
where C is the effective clearance volume ratio; ݌௖௢௡ௗ	is the condenser pressure, which is taken 
to be the same as the discharge pressure, neglecting discharge valve pressure losses; ݌௘௩௔௣ is the 
evaporator pressure; ݌ߜ is a suction pressure drop parameter, introduced because the suction 
valve pressure drop has a significant detrimental effect on the mass flow rate; and k is the ratio of 
specific heats evaluated at the compressor suction. In the above equation, C and ݌ߜ are obtained 
as curve fit parameters from the data. Since ݌ߜ	 is calculated using a curve fit, it is expected that 
it captures the combined effect of suction pressure losses as well as internal heat transfer to the 
suction gas.  
 
The equation for the power consumption is given as: 
 

.ݎ݁ݓ݋ܲ ௖௢௠௕ߟ ൌ 	 ሶ݉ 	.
݇

݇ െ 1
. ௦௨௖௧௜௢௡݌ . ௦௨௖௧௜௢௡ߴ . ൥൬

ௗ௜௦௖௛௔௥௚௘݌
௦௨௖௜௧௢௡݌

൰

௞ିଵ
௞
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where ݌௦௨௖௧௜௢௡ ൌ ሺ1 െ ௗ௜௦௖௛௔௥௚௘݌ ௘௩௔௣ and݌ሻ݌ߜ	 ൌ  .௖௢௡ௗ݌	
 



AHRI Project No. 8013 Final Report  Page 28 
Optimized Thermal Systems, Inc.  May, 2015 

The only unknown term in the above equation is ߟ௖௢௠௕, which is obtained from a regression fit 
to an exponential equation as a function of the evaporator pressure: 
 
௖௢௠௕ߟ  ൌ ݀ ൅ ݁. expሺ݂. ௘௩௔௣ሻ 7.2.4݌

 
with d, e and f being regression parameters. 
 
The model was found to extrapolate to 10°C higher and lower evaporating and condensing 
temperatures, keeping the relative error to less than 5%. 
 
Mackensen et al. (2002) attempted to extend Jahnig et al.’s model to larger scale reciprocating, 
scroll and screw compressors (semi-hermetic and open drive). With the assumption of a 
polytropic process, the model was found to predict the mass flow rate satisfactorily with mean 
weighted errors of 3.7% for reciprocating compressors, 2.3% for scroll compressors and 0.6% 
for screw compressors. Parameters estimated using data for one refrigerant were found to be 
useful in calculating the mass flow rate with another refrigerant, with a mean weighted error of 
around 3%.  
 
Winandy et al. (2002) proposed a model for open-type reciprocating compressors (followed by 
one for hermetic scroll compressors), which assumes the presence of a fictitious wall that gains 
heat from the discharged gas and loses it to the suction gas and ambient, The model also 
accounts for electromechanical losses. The model was formulated along the lines of the 
ASHRAE toolkit for primary HVAC equipment, but was extended to include the influence of the 
ambient temperature. Winandy’s team concluded that the clearance volume re-expansion and the 
throttling are the processes affect the mass flow rate the most. The clearance volume re-
expansion affects the volumetric efficiency by heating up the suction gas; the throttling can be 
modeled as a fixed area model. As such, the equations require seven parameters to compute the 
mass flow rate and exhaust temperature: 

 
 

ሶ݉ ൌ ቆ
௦௨ଶ݀ߨ

4
ቇ .ඥ2∆ ௦ܲ௨ߩ௦௨ 7.2.5

 
where ݀௦௨ is a fictitious nozzle throat diameter where throttling occurs. 
  
Heat transfer can be determined by a conventional steady state energy balance between the 
fictitious wallሺݐ௪ሻ and the suction gas൫ ሶܳ௦௨, ,௦௨ݐ ܣ ௦ܷ௨൯, discharge gas൫ ሶܳ௘௫, ,௘௫ݐ ܣ ௘ܷ௫൯ and the 
ambient൫ ሶܳ௔௠௕, ,௔௠௕ݐ ) ௔௠௕൯, and heat due to electromechanical lossesܷܣ ሶܹ ௟௢௦௦). The swept 
volume ௦ܸ and the clearance factor ܥ௙ are used to compute the effect of the clearance volume re-
expansion on the volumetric efficiency: 

 
 ሶ݉ ௦௨ଶߴ

ܰ
ൌ ௦ܸ െ ௦ܸܥ௙ ൬

௦௨ଶߴ
௘௫ଶߴ

െ 1൰ 
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With the compression process regarded as isentropic, the exhaust temperature can be computed 
as a function of the fluid properties and the temperatures: 
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௘௫ଶݐ  ൌ ,݀݅ݑሺ݂݈ݐ ,௘௫ଶ݌ ,௦௨ଶ݌ ,௦௨ଶݐ ݏ ൌ  ௦௨ଶሻݏ

 
7.2.7

where su2 and ex2 represent the properties inside the compressor cylinder and su and ex 
represent the properties in the intake and exhaust manifolds. Two more parameters would be 
needed to predict the compressor shaft power requirement. The relative error for predicting the 
mass flow rate varied between -6% and 6% and between -7% and 3% for the shaft power. 
Despite the advantage that the model can easily be extended to other types of compressors 
(scroll, rotary, hermetic and open-type), the difficulty of collecting data for the parameters 
required for this model make it unfeasible for performance characterization.  
 
Shao et al. (2004) proposed a black box model to calculate the refrigerant mass flow rate, 
compressor power input and the COP of variable speed compressors. The input parameters are 
the compressor motor power input and the refrigerant mass flow rate as functions of evaporation 
temperature for several condensation temperatures, obtained from the manufacturers. When 
operating at a certain frequency, the performance of an inverter compressor is similar to that of a 
constant speed compressor operating at the same frequency. Thus, the inverter compressor can 
be scattered as an infinite constant speed compressor for each of the different frequencies. Since 
the performance curves provided by compressor manufacturers represent the performance of an 
inverter compressor operating at different frequencies, a map based model of the inverter 
compressor can be obtained via an analysis of the performance and fitting of the performance 
curves. The compressor power input and mass flow rate at the map condition may be expressed 
as second order functions of the evaporation temperature and the condensation temperature: 
  
଴ܯ 
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where ௖ܶ and ௘ܶ are the condensation and the evaporation temperatures; ܽଵ െ	ܽ଺ and ܾଵ െ	ܾ଺ 
are constants depending on the compressors. 
 
Assuming there are more than six data points (n≥6),  
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Then ܯ଴
∗ can be expressed as ܯ଴

∗ = ܶ. ܽ 
 

where T = ቎
௖ܶ,ଵ
ଶ

௖ܶ,ଵ			 ௖ܶ,ଵ ௘ܶ,ଵ			 ௘ܶ,ଵ
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Then the vector a can be calculated as  

 



AHRI Project No. 8013 Final Report  Page 30 
Optimized Thermal Systems, Inc.  May, 2015 

 ܽ ൌ ሺ்ܶܶሻିଵ்ܶܯ଴
∗ 

 
7.2.12

A simulation model such as the one above may be set up at each frequency if experimental data 
is provided. However, since manufacturers provide data only at certain frequencies, a 
relationship between the performance and compressor frequency needs to be defined. It can be 
observed from the data that the ratio between the mass flow rate at a constant frequency to that at 
the basic frequency remain constant at different evaporation and condensation temperatures. 
Thus, the relationship between the ratio of mass flow rates and the compressor frequency may be 
expressed as a second order function of compressor frequencies:  
 

 KM = 
ெబ

ெబ
∗ = c1(f – f*)2 + c2(f – f*) + c3 7.2.13

 
 c = [c1, c2, c3]T 

 
7.2.14

 
 KM = [kM,1, kM,2,…..kM,n]T 

 
7.2.15

Thus kM = F.c  

where F = ൥
ሺ ଵ݂ െ	݂∗ሻଶ ሺ ଵ݂ െ ݂∗ሻ 1

⋮ ⋱ ⋮
ሺ ௡݂ െ ݂∗ሻଶ ሺ ௡݂ െ ݂∗ሻ 1

൩ 

Then the vector C can be calculated via  
      
ܥ  ൌ ሺܨ்ܨሻିଵ்݇ܨ௡ 7.2.16

 
A similar procedure can be followed for compressor power as well. Model validation suggests 
that the average relative errors are less than 2%, 3% and 4% for refrigerant mass flow rate, 
compressor power input and the COP, respectively.  
 
Duprez et al. (2007) proposed an extension to Winandy’s fictitious thermal wall model, using 
REFPROP to simplify the calculation procedure for reciprocating and scroll compressors for 
domestic heat pumps. The refrigerant mass flow rate is calculated from a knowledge of the 
operating conditions and four different parameters: the temperature of the fictitious wall 
(assumed constant), the overall heat transfer coefficient of the suction line, the diameter of the 
suction pipe and the clearance volume factor. A functional relationship between the product of 
the electrical and isentropic efficiencies ሺߟ௘௟௘௖ߟ௜௦௘௡ሻ and the compression ratio is proposed in the 
form of a 6th-degree equation, the coefficients of which are computed by least squares regression 
of compressor data (a minimum of 7 points) provided by manufacturers. The model for scroll 
compressors is similar. Mean errors for the mass flow rate calculations were 1.1% and 2.42% 
and 1.69% and 1.04% for electrical power calculations, for reciprocating and scroll compressors, 
respectively.     
 
Navarro et al. (2007) proposes a 10 parameter model representing the main sources of losses in 
the compressor to predict the volumetric and compressor efficiency. The compression process is 
assumed to be isentropic and least square correlation methods for fitting are replaced with Monte 
Carlo techniques, which are better for non-linear system simulation but computationally 
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inefficient. The model is a phenomena oriented model where the main sources of loss include 
vapor heating due to motor cooling, mechanical loss dissipation and leakages from the discharge, 
isenthalpic pressure loss at the suction valve, isentropic compression, isenthalpic leakages at the 
discharge, and vapor cooling due to heat transfer to the suction side. The main drawback of the 
developed model is that the equations for volumetric and compressor efficiencies are presented 
as a system of implicit equations, which require time consuming computations. Another 
drawback is that, although the model can predict the efficiencies with an error of less than 3%, it 
was proposed specifically for reciprocating compressors and is quite difficult to adapt to other 
compressor types. 
 
Castaing-Lasvignottes et al. (2009) contend that the volumetric and isentropic efficiencies are the 
most efficient way to simulate compressor behavior and propose a model that studies the 
influence of the clearance volume ratio on the volumetric efficiency and friction factor on the 
isentropic efficiency. The mass flow rate, shaft power, discharge enthalpy and heat exchanged 
can also be calculated. Thus, this model, from thermodynamic conditions and geometric design 
of the compressor, allows determination of the three macroscopic efficiencies that are needed for 
a global refrigeration system simulation. 
 
Aprea and Renno (2009) extended Shao’s model to include the cooling capacity Q: 
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The same procedure as presented by Shao is followed. Aprea and Renno conclude that these 
equations allow to determine the optimum frequency for each working condition, once the 
evaporation and condensation temperatures and the cooling load are fixed. 
 
Zhao et al. (2009) constructed a polynomial artificial neural network (ANN) model to simulate 
an economized, gas injected, screw compressor. A three layer perceptron network was used with 
the Levenberg-Marquardt algorithm used for training. A third order polynomial function and a 
pure linear function were used as transfer functions in keeping with the third order polynomial 
equation in AHRI Standard 540. The results of the screw compressor modeling show that almost 
all the points for un-economized system performance lie in the 5% error band and for 
economized performance, 93% of points fall in the 10% error band.  
 
C.P. Arora (2009) proposes equations that can be used to calculate the volumetric efficiency and 
power consumption of a reciprocating compressor directly, although the equations are general 
enough to extend to other compressor types. Specifically, volumetric efficiency is calculated 
using equation 7.2.18. 
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where clearance volume factor ܥ ൌ 	 ௏೎
௏೛

 

In the above formulae, ௖ܸ is the clearance volume in the compressor cylinder and ௣ܸ is the piston 
swept volume. ݌ଵ and ݌ଶ refer to the pressures in the suction and discharge manifolds 
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respectively, and ݌௦ and ݌ௗ are the in-cylinder pressures at the end of the suction and discharge 
strokes, respectively. ݊ and ݉ are the polytropic exponents of the compression and the re-
expansion process, respectively. The power input to the compressor is calculated from 
 
 

ሶܹ ൌ ௩௢௟ߟ
௣ܸ

ଵߥ
൬
݄ଶ െ ݄ଵ
ప௦௘௡ߟ௠௘௖௛ߟ

൰
ሶ
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where ௣ܸሶ  is the volumetric flow rate, ߴଵ is the specific volume at suction, and ݄ଵ and ݄ଶ are the 
enthalpies of the refrigerant in the suction and discharge manifolds. 
 
Zhao et al. (2010) also proposed a loss efficiency model for representation of compressor 
performance. A neural network loss efficiency model was developed to simulate the performance 
of positive displacement compressors such as screw, reciprocating and scroll compressors. A 
three layer perceptron network with a second order polynomial transfer function is used for the 
volumetric efficiency model, whereas a third order polynomial transfer function is used for the 
isentropic efficiency model. The compression ratio and condensation temperature are the inputs 
for the volumetric efficiency model and the condensation and evaporation temperatures are the 
input parameters for the isentropic efficiency model. The selection of input parameters of neural 
networks was found to be critical to network prediction accuracy. A pure linear transfer function 
was used in the output layer of both the models. The proposed neural networks gives less than 
0.4% standard deviation and 1.3% maximum deviation against manufacturer's data. 
 
Regression analysis is a method used to understand the effect a particular variable has on other 
dependent variables. Regression based models include both parametric methods, such as linear 
regression and ordinary least squares, and non-parametric models where the independent variable 
is constructed from information gathered from the data. Lee et al. (2012) performed a study in 
which the performance prediction ability of eleven regression based empirical models for water 
chillers were evaluated using over 2,000 data sets in which they identified bi-quadratic, 
multivariate polynomial, simpler multivariate polynomial and the modified design of 
experiments (DOE-2) models as having the best predictive capability, with the coefficient of 
variation of the root mean square error for all being less than 1%. However, it should be 
emphasized that this analysis was a system level performance audit and not specific to 
compressors. 
 
Qiao et al. (2014) proposed a semi-empirical model for a variable speed compressor in which the 
volumetric efficiency is calculated as a regression function of the suction pressure, discharge 
pressure and the compressor operating frequency: 
 

௩௢௟ߟ  ൌ 	 ܿ଴ ൅	ܿଵ߮ ൅	ܿଶ߮ଶ ൅ ܿଷ߮ଷ ൅ ܿସሺ݌ௗ௜௦ െ ௦௨௖ሻሺ1݌ ൅	ܿହ݌௦௨௖ሻ 7.2.20
                
 

 ܿ0 ൌ ܽ1 ൅ ܽ2∅ ൅ ܽ3∅
2 

ܿ1 ൌ ܽ4 ൅ ܽ5∅ ൅ ܽ6∅
2
 

ܿ2 ൌ ܽ7 ൅ ܽ8∅ ൅ ܽ9∅
2
 

ܿ3 ൌ ܽ10 ൅ ܽ11∅ ൅ ܽ12∅
2

7.2.21
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ܿ4 ൌ ܽ13 ൅ ܽ14∅ ൅ ܽ15∅
2
 

ܿ5 ൌ ܽ16 ൅ ܽ17∅ ൅ ܽ18∅
2

 
 ߮ ൌ

ௗ௜௦݌
௦௨௖݌

 7.2.22

  
 

∅ ൌ
݂

௡݂௢௠௜௡௔௟
  7.2.23

 
The power input to the compressor can be determined as a function of the suction pressure, the 
compressor operating frequency and the volumetric flow rate at suction: 
 

ሶ݌݉݋ܹܿ  ൌ ሶܿݑݏܸܿݑݏ݌1ݖ ሺ߮
2ݖ െ 1ሻ ൅ 7.2.24 3ݖ

 
1ݖ  ൌ ܾ1 ൅ ܾ2∅ ൅ ܾ3∅

2 

2ݖ ൌ ܾ4 ൅ ܾ5∅ ൅ ܾ6∅
2
 

3ݖ ൌ ܾ7 ൅ ܾ8∅ ൅ ܾ9∅
2 

 

7.2.25

Compressor performance was not specifically analyzed as part of this work since the focus was 
on control investigation of multi-evaporator air conditioning systems. As shown in the follow 
section, however, this method was selected for analysis as it provides an approach for variable 
speed compressors while keeping the number of test iterations required to a minimum. This 
model is also simpler than the earlier method presented by Shao et al. (2004) model. 
 
This review summarizes those papers that were identified as having the most potential to usefully 
be adapted for the purpose of this project. The major factors considered in the choice of 
publications to review were accuracy, ease of computation, number of tests required and general 
applicability. 
 

6.2 Identified Alternative Methods and Variations 

Based on the literature review outlined above, several alternative methods were identified for 
further analysis and comparison against Standard 540. These are summarized in Table 7.  
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Table 7: Compressor performance map data representation methods evaluated for AHRI Project 8013 

Reference 
(Model 

Identifier) 
Equations 

Parameters 
Required 

Number of 
Data 

Points 
Required 

Superheat 
Correction 
Required 

AHRI 
Standard 540 
(AHRI) 

ܺ ൌ 1ܥ ൅ 2ሺܵሻܥ ൅ ሻܦ3ሺܥ ൅ 4ሺܵଶሻܥ ൅ .5ሺܵܥ ሻܦ ൅ ଶሻܦ6ሺܥ ൅ 7ሺܵଷሻܥ
൅ .8ሺܵଶܥ ሻܦ ൅ .9ሺܵܥ ଶሻܦ ൅  ଷሻܦ10ሺܥ

ܵ ൌ ܿݑݏܶ ∶  ݁ݎݑݐܽݎ݁݌݉݁ݐ	ݐ݊݅݋݌	ݓ݁݀	݊݋݅ݐܿݑܵ
ܦ ൌ :ݏ݅݀ܶ  ݁ݎݑݐܽݎ݁݌݉݁ݐ	ݐ݊݅݋݌	ݓ݁݀	݁݃ݎ݄ܽܿݏ݅ܦ

ܺ:  ܿ݅ݎݐ݁݉	݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ
1ܥ െ :10ܥ ݏݐ݂݂݊݁݅ܿ݅݁݋ܥ ݀݁݊݅݉ݎ݁ݐ݁݀ ݕܾ ݎ݈ܽ݁݊݅  ݊݋݅ݏݏ݁ݎ݃݁ݎ

 

௦ܶ௨௖

ௗܶ௜௦ 
 

11 Yes 

Qiao, et al. 
(QIAO) 

௩௢௟ߟ ൌ 	 ܿ଴ ൅	ܿଵ߮ ൅ ܿଶ߮ଶ ൅ ܿଷ߮ଷ ൅ ܿସሺ݌ௗ௜௦ െ ௦௨௖ሻሺ1݌ ൅ ܿହ݌௦௨௖ሻ 
 

ܿ଴ ൌ 	ܽଵ ൅	ܽଶ∅ ൅	ܽଷ∅ଶ 
ܿଵ ൌ 	ܽସ ൅	ܽହ∅ ൅	ܽ଺∅ଶ 
ܿଶ ൌ 	ܽ଻ ൅	଼ܽ∅ ൅	ܽଽ∅ଶ 
ܿଷ ൌ 	ܽଵ଴ ൅	ܽଵଵ∅ ൅	ܽଵଶ∅ଶ 
ܿସ ൌ 	ܽଵଷ ൅	ܽଵସ∅ ൅	ܽଵହ∅ଶ 
ܿହ ൌ 	ܽଵ଺ ൅	ܽଵ଻∅ ൅	ܽଵ଼∅ଶ 

 

௖ܹ௢௠௣ሶ ൌ 	 ௦௨௖݌ଵݖ ௦ܸ௨௖ሶ ሺ߮௭మ െ 1ሻ ൅	ݖଷ 
ଵݖ ൌ 	ܾଵ ൅	ܾଶ∅ ൅	ܾଷ∅ଶ 
ଶݖ ൌ 	ܾସ ൅	ܾହ∅ ൅	ܾ଺∅ଶ 
ଷݖ ൌ 	ܾ଻ ൅	଼ܾ∅ ൅	ܾଽ∅ଶ 

 

߮ ൌ
௣೏೔ೞ
௣ೞೠ೎

 ∅ ൌ
௙

௙೙೚೘೔೙ೌ೗
 

 

 ௦௨௖݌
ௗ௜௦݌  
݂ 

10 Yes 
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Jahnig, et al. 
(KLEIN) ሶ݉ ௖௔௟௖ ൌ 	ቐ1 െ ܥ ቎ቆ

௖௢௡ௗ݌
௘௩௔௣ሺ1݌ െ ሻ݌ߜ

ቇ

ଵ
௞
െ 1቏ቑ .

ܸ. ܯܴܲ
.௦௨௖௧௜௢௡ߴ 60

 

.ݎ݁ݓ݋ܲ ௖௢௠௕ߟ ൌ 	 ሶ݉ 	.
݇

݇ െ 1
	. .	௦௨௖௧௜௢௡݌ .	௦௨௖௧௜௢௡ߴ ൥൬

ௗ௜௦௖௛௔௥௚௘݌
௦௨௖௧௜௢௡݌

൰

௞ିଵ
௞
െ 1൩ 

௦௨௖௧௜௢௡݌ ൌ ሺ1 െ  ௘௩௔௣݌ሻ݌ߜ	
ௗ௜௦௖௛௔௥௚௘݌ ൌ  ௖௢௡ௗ݌	

௖௢௠௕ߟ ൌ ݀ ൅ ݁. exp൫݂.  ௘௩௔௣൯݌
 
 

 ௘௩௔௣݌
௖௢௡ௗ݌  
ܸ 

 ܯܴܲ

௘ܶ௩௔௣ 

6 Yes 

Winandy, et 
al. 
(Winandy) 

ሶ݉ ൌ ቆ
௦௨ଶ݀ߨ

4
ቇ .ඥ2∆ ௦ܲ௨ߩ௦௨ 

ሶ݉ ௦௨ଶߴ
ܰ

ൌ 	 ௦ܸ െ	 ௦ܸܥ௙ ൬
௦௨ଶߴ
௘௫ଶߴ

െ 1൰ 

 

௦ܹ௛ሶ ൌ పܹ௡ሶ ൅ ௟ܹ௢௦௦ሶ  

௟ܹ௢௦௦ሶ ൌ ߙ పܹ௡ሶ ൅ 	 ௟ܹ௢௦௦଴ሶ ൬
ܰ

଴ܰ
൰
ଶ

 

పܹ௡ሶ ൌ ሶܯ ሺ݄௘௫ଶ െ ݄௦௨ଶሻ 
 

௦ܸ
 ௙ܥ
 ௦௨ߜ
ܣ ௦ܷ௨ 
ܣ ௘ܷ௫  
 ௔௠௕ܷܣ
∆ ௘ܲ௫  

௟ܹ௢௦௦଴ሶ  
 ߙ

10 No 

Arora, C.P. 
(Arora) ߟ௩௢௟ ൌ 	 ሺ1 ൅ ሻܥ ൬

௦݌
ଵ݌
൰

ଵ
௡
െ ܥ ൬

ௗ݌
ଵ݌
൰

ଵ
௠
െ 0.015 ൬

ଶ݌
ଵ݌
൰ 

ሶܹ ൌ 	 ௩௢௟ߟ
௣ܸ

ଵߥ
൬
݄ଶ െ	݄ଵ
௜௦௘௡ߟ௠௘௖௛ߟ

൰ 

ଵ݌
 ଶ݌
 ௦݌
 ௗ݌
݉ 
݊ 

7 No 

MPOLY ݎ ൌ
ௗ௜௦݌
௦௨௖݌

 

ሻݎ݁ݓ݋ܲ	ݎ݋ሺ	ݕ݂݂ܿ݊݁݅ܿ݅ܧ	ܿ݅ݎݐ݁݉ݑ݈݋ܸ
ൌ 0ܥ ൅ ݎ1ܥ ൅ ݏ2ܲܥ ൅ ݏܲݎ3ܥ ൅ ଶݎ4ܥ ൅ ଶݏ5ܲܥ

൅ ଶݏܲݎ6ܥ	 ൅ ݏଶܲݎ7ܥ ൅ ଷݎ8ܥ ൅  ଷݏ9ܲܥ

௦௨௖݌
 ௗ௜௦݌

 
 

11 Yes 
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6.3 Analysis and Comparison of Current Method 

6.3.1 Analysis of AHRI-540 Method with Black Box Models 

As a first step, the 10-coefficient AHRI-50 method was compared against various other black-
box curve fit models from a commercially available curve-fitting software package. The models 
investigated included traditional polynomials, rational polynomials, Chebychev polynomials and 
sigmoid functions. For polynomial-like functions varying degrees were also investigated. It was 
found that the current 10-coefficient map still provided the best prediction and surface shape. 
The map is also computationally cheaper to implement and evaluate at 24 floating point 
operations. The other polynomial forms such as Chebychev polynomials had a much better 
goodness of fit (r² and Fit standard error) measures, but did not represent the underlying physics. 

6.3.2 Analysis of AHRI-540 Method with Comprehensive Data Sets 

Comprehensive data sets, with finer increments in suction and discharge dew point temperatures 
were made available by AHRI. The data sets for these three were used to conduct detailed 
analysis of the current representation method. 
 
For each compressor, two data sets were made available. The first data set (16 points), referred to 
as the “map data” or the “source data”, is the set of points typically used to generate the 10 
coefficients.  The second data set, referred to as the “verification data” or the “comprehensive 
data” was the comprehensive performance map (600+ points) measured over the entire operating 
envelope, but at finer increments than the map data. Figure 23 shows the map data and the 
verification data for the first test data set. 
 
In this analysis, the first data set, referred to as the “map data” is used to fit the 10-coefficient 
polynomial. This polynomial is then used to predict the original map data as well as the 
comprehensive verification data. 
 
Table 8 below shows the regression metrics for the map data set. The various metrics are defined 
as follows: 
 
 AAPE: Average Absolute Percent Error 
 MAPE: Maximum Absolute Percent Error 
 RRMSE: Relative Root Mean Square Error (RMSE, but normalized with actual value) 
 
The AHRI-540 regression developed based on the map data was then used to predict the 
performance for the points in comprehensive data set. The corresponding errors along with the 
respective operating envelope are shown in Figure 24 through 31. 
 
Based on this analysis, the following conclusions can be drawn: 
 

1. The AHRI-540 map predicts source data for both power and mass flow rate within 
±0.5%. 

2. Comparison against verification data shows that the highest errors are concentrated in the 
third-quadrant, i.e., low suction and discharge dew point temperatures. This region is also 
outside the original map data and requires extrapolation. 
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3. Within the operating envelop for which map data is available, there are certain regions 
that exhibit errors of more than 1% in mass flow rate and power, as shown in Figure 29 
and Figure 31 respectively. These regions can be correlated to corresponding regions in 
Figure 23, where-in there aren’t sufficient measured data points. For example, the region 
bounded by Te < 30°F and Tc > 100°F.  This error information can be used in developing 
a sampling plan for testing. 

 

 
Figure 23: Sample comprehensive test data, points used for map generation and comprehensive testing 

 
Table 8: Comparison against comprehensive test data 

 Map Generation Data Verification Test Data 
Points  16 611 
Power AAPE  0.153791 0.684785 
Power MAPE 0.492499 9.068185 
Power RRMSE  0.001938 0.011601 
Mass flow AAPE  0.312222 0.595986 
Mass flow MAPE 0.677742 7.81275 
Mass flow RRMSE 0.0035 0.009424 
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Figure 24: Comprehensive Set-1, errors in mass flow rate, based on source data 

 

 
Figure 25: Comprehensive Set-1, absolute errors in mass flow rate, based on source data 
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Figure 26: Comprehensive Set-1, errors in power, based on source data 

 

 
Figure 27: Comprehensive Set-1, absolute errors in power, based on source data 
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Figure 28: Comprehensive Set-1, errors in mass flow rate, based on verification data 

 

 
Figure 29: Comprehensive Set-1, absolute errors in mass flow rate, based on verification data 
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Figure 30: Comprehensive Set-1, errors in power, based on verification data 

 

 
Figure 31: Comprehensive Set-1, absolute errors in power, based on verification data 
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6.4 Comparison of Current Method and Methods from Literature 

The current AHRI-540 method is compared against four other methods from the literature. The 
candidate methods presented in Table 7 were selected before the complete data sets were 
available for present analysis. In light of available data sets and the numerical issues that resulted 
during model fitting for some of these equations, it was decide to choose a modified set of 
candidate methods. These methods and the nomenclature used are summarized in Table 9 below. 
 

Table 9: Summary of performance representation methods 

Model/Method 
Required 
# of Data 

Points 

Regression 
Type 

Comments 

AHRI540 (baseline) 11 Linear Easy to solve, no guess values 

MPOLY 11 Linear 
Variation of the AHRI-540 method; easy to 
solve, no guess values required. 

QIAO (Qiao et al.) 7 Mixed 
Requires guess values; capable of handling 
variable speed, with 19 points 

KLEIN (Jahnig et al.) 6 Non-linear 
Most comprehensive and popular model 
from literature; requires guess values 

EMILIO (Emilio 
Navarro et al., 2007) 

6 Non-linear 
Can handle superheat; requires guess values 

 
During analysis, the nonlinear models were found to be numerically highly unstable for several 
data sets. For such cases, a multi-start non-linear least squares fitting method was used. 
As a first test, all the models were fitted based on the source data and were used to predict the 
source data itself. It is expected that a regression model should be able to predict its source data 
with reasonable accuracy. There were 43 different data sets as described previously. The models 
were fitted for all these data sets and the various error metrics were computed. For the sake of 
brevity, the average values are reported here. For example, consider the metric of Average 
Absolute Percent Error (AAPE). This metric was evaluated for each model for each data set. 
Then, the AAPE values were averaged across different compressor types. Similar averaging was 
carried out for other metrics of Maximum Absolute Error Percent (MAEP) and Relative Root 
Mean Square Error (RRMSE).  
 
The average errors in mass flow rate prediction for different models are shown in Figure 32 and 
those for the power prediction are shown in Figure 33. It can be seen that in general, the 
AHRI540 model has very good prediction capabilities. One of the reasons is that the underlying 
regression does not require starting guess values and with the use of linear regression, it is 
possible to achieve near perfect fit. The models EMILIO and KLEIN exhibit the worst errors. 
This is in part because of the highly non-linear nature of the equations and the numerical 
challenges encountered during data fitting. It is also observed from Figure 33 that the AHRI540, 
QIAO and the MPOLY models are more suited for rotary and reciprocating compressors as 
compared to scroll compressors. 
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Figure 32: Average errors in mass flow rate prediction 

 

 
Figure 33: Average errors in power prediction 
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6.5 Effect of Superheat 

The conventional AHRI-540 standard requires that the compressor performance be rated as a 
fixed 20°F suction superheat. As such, any model based on such data is valid for 20°F suction 
superheat only. Some of the physics-based models can be used for other superheat values 
without additional corrections. 
 
In the literature, one of the most popular method of superheat correction for the AHRI-540 
performance map is the one proposed by Dabiri and Rice (1981). Their proposed mass flow rate 
correction is a multiplier that is based on the ratio of actual suction density and the suction 
density corresponding to 20°F. 
 
In this section, the various models are evaluated for their prediction capabilities with different 
superheat values. Data sets are available for four different compressors, each at a superheat of 
20°F and 40°F. The number of points and the actual values for the two cases are not necessarily 
the same. A summary of this data set is provided in Table 10. 
 

Table 10: Summary of data available for superheat analysis 
Model Code Compressor 

Type 
Refrigerant Points at 20°F 

superheat 
Points at 40°F 

superheat 
R32-S-OX Scroll R32 59 52 
R404A-S-OX Scroll R404A 63 64 
R410A-S-OX1 Scroll R410A 66 64 
R410A-S-OX2 Scroll R410A 66 64 

6.5.1 Model Analysis 

For the purposes of comparison, 20°F data was used to fit all models and then these models were 
used to predict the data for the 40°F superheat cases. For the sake of completeness, the 20°F 
model fitting results are also included here. 
 
Figures 34 and 35 show the baseline model prediction errors for the different compressors and 
prediction models at 20°F superheat. The average error in mass flow rate prediction is less than 
1%. This is expected since the source data used to develop the model are used to predict 
performance. The maximum error in mass flow rate prediction for each case is less than 3%, 
which is consistent with that observed in the previous sections. It should be noted that the 
KLEIN and the EMILIO models work surprisingly well in this case.  
 
In the case of power prediction, the average absolute errors for the AHRI540 model are less than 
5%, whereas for the QIAO model, they are less than 15%. The KLEIN and EMILIO models 
have the worst predictions. As highlighted previously, this is mainly attributed to the numerical 
challenges encountered during non-linear regression. 
 
The mass flow rate prediction errors for the case of 40°F are shown in Figure 36. The first 
observation is that the AHRI540 map predictions show errors greater than 5% for all of the 
compressor data sets. The AHRI540-C model shown in Figures 36 and 37 refers to the corrected 
model. The corrections proposed by Dabiri and Rice (1981) were utilized. The predictions from 
the QIAO and the KLEIN models exhibit errors less than 3%, with average errors for the QIAO 
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model being less than 1.5%. This is expected, since both of these models correlate the volumetric 
efficiency and use it along with suction density to calculate the mass flow rate. The EMILIO 
model still exhibits significant errors. For the AHRI540-C case (AHRI540 with superheat 
correction), the errors are less than 1%. This shows that the Dabiri and Rice (1981) superheat 
correction works very well for the mass flow rate. 
 
In the case of power, the AHRI540 model exhibits the best performance, i.e., the lowest errors. 
The QIAO model also has average errors less than 3%, but there are some regions in the map 
wherein the prediction error is more than 5%. This is indicated by the Maximum Absolute error 
(MAEP). 
 
In order to better understand the sources of the errors and to investigate if these errors are 
correlated with any input or operating parameters, additional data visualization was carried out. 
For each case (compressor data set and model), three plots were generated. The first plot shows 
the data points on the operating envelope (i.e., [Te,Tc]) chart with errors indicated by shading. 
The second plot shows the errors vs. ratio of suction density and saturated suction density with 
pressure ratio (Pr) indicated by shading. The third plot shows the errors vs. ratio of suction 
density vs. the map suction density (i.e., 20°F superheat) with pressure ratio indicated by the 
shading.  Figure 38 shows such plots for mass flow rate errors corresponding to an R32 
compressor using the AHRI540 model. Figure 39 shows the corresponding plot for errors in 
power prediction. 
 
In order to improve readability of the report, only a subset of the plots are shown here. Figures 
40 and 41 show a particular cases where a strong correlation between the mass flow rate errors 
and the ratio of suction densities are observed for the AHRI540 model. This explains why the 
Dabiri and Rice (1981) correction (linear in ratio of suction densities) works so well. Same 
behavior was observed for the other compressors in this data set. 
 
As seen from Figures 42 and 43, the errors in mass flow rate prediction from the EMILIO and 
KLEIN models show an approximate linear correlation with the ratio of suction densities. Thus, 
it is possible to develop a corresponding correction for these models as well.  
 
For the QIAO model, however, no strong correlation between mass flow rate errors and any 
other parameters was observed. One reason is that the model already predicts most data within 
3%. In the case of power prediction, as shown in Figure 44, there was no obvious correlation 
between prediction errors and any of the parameters. Further investigation is recommended to 
fully evaluate this behavior. 
 



AHRI Project No. 8013 Final Report  Page 46 
Optimized Thermal Systems, Inc.  May, 2015 

 
Figure 34: Baseline comparison for mass flow prediction, at 20°F superheat 

 
 

 
Figure 35: Baseline comparison for power prediction, at 20°F superheat 
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Figure 36: Comparison for mass flow prediction, at 40°F superheat 

 
 

 
Figure 37: Comparison for power prediction, at 40°F superheat 
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Figure 38: Errors in mass flow rate, R32 scroll compressor, at 40°F superheat 
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Figure 39: Errors in power, R32 scroll compressor, at 40°F superheat 
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Figure 40: Strong linear correlation between mass flow rate errors from AHRI540 model and ratio of suction 

densities for R404A scroll compressor 
 

 
Figure 41: Strong linear correlation between mass flow rate errors from AHRI540 model and ratio of suction 

densities for R$10A scroll compressor 
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Figure 42: Strong linear correlation between mass flow rate errors from EMILIO model and ratio of suction 

densities for R404A scroll compressor 
 

 
Figure 43: Correlation between power errors from KLEIN model and ratio of suction densities for R32 scroll 

compressor 
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Figure 44: Correlation between power errors from QIAO model and ratio of suction densities for R410A scroll 

compressor 

6.5.2 Summary of Superheat Analysis 

Based on the analysis presented in the previous section, the following general conclusions can be 
drawn: 

1. The error in predicted mass flow rate for superheat values different than the map 
superheat has a strong correlation with the ratio of suction densities. The same is true 
for errors in power prediction, except for the QIAO model. 

2. The Dabiri and Rice (1981) correction for superheat works well for the AHRI540 
map. 

3. The QIAO and the KLEIN models have good predicted capabilities at superheat 
values different than the source (map) data superheat. Most errors were within 3%. 

4. The AHRI540 maps gives the best predictions in power for the 40°F superheat case, 
even better than the corrected model. The QIAO model shows good average 
prediction, but very high maximum errors. All of the other models exhibit 
significantly high errors making them unusable for any prediction task. 

5. Based on the error analyses, it is possible to develop a power correction equation for 
the QIAO and KLEIN models. 

6. In the present analysis, all of the source data was based on 20°F superheat with only 
five compressor data sets. It would be interesting to see how the predictions change 
when mixed superheat data is used for model development. This is particularly 
important for the QIAO, KLEIN and EMILIO models, since they are physics-based. 

 



AHRI Project No. 8013 Final Report  Page 53 
Optimized Thermal Systems, Inc.  May, 2015 

7 Sampling Based on Conventional Methods 

This section studies the influence of different sampling methods. Based on the manufacturer 
survey, there is no well-established methodology used in selecting the sample points for 
developing the 10-coefficient map. 

7.1 Methodology 

The map data sets and the comprehensive verification data sets described in Section 6.3 are used 
here. The general approach is as follows: 
 

1. Use the map data to develop a 10-coefficient polynomial model for mass flow rate and 
power consumption and verify these models against the comprehensive data set. 

2. Using the comprehensive verification dataset, develop a regression surface using the 
Kriging metamodel. The Kriging metamodel does not require a functional form and is 
capable of exactly reproducing the source data. 

3. Choose different sampling methods (e.g., LHS – Latin Hypercube Design). For each 
sampling method, select a specified number of points from the operating envelope. 

4. Compute the mass flow rate and power consumption using the Kriging metamodel for the 
sampled points.  

5. Develop a 10-coefficient polynomial model based on the data from Step-4. 
6. Verify the model from Step-5 against the comprehensive data set. 

7.2 Results 

7.2.1 Results for Comprehensive Test Set-1 

The map data set contains a total of 16 points. For the present analysis, a Latin Hypercube (LHS) 
design comprising of 15 points is chosen. A comparison of the LHS sample points and the map 
data points is shown in the Figure 45 below. 
 



AHRI Project No. 8013 Final Report  Page 54 
Optimized Thermal Systems, Inc.  May, 2015 

 
Figure 45: Map data points vs. LHS sample points 

 
In the following figures, the errors in predicted mass flow rate and power are shown for 
comparison. 

 
Figure 46: Comparison of errors in predicted mass flow rate for map data vs. LHS samples 
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Figure 47: Comparison of errors in predicted power for map data vs. LHS samples 

 
As observed from Figures 46 and 47, the 10-coefficient polynomial obtained using the LHS 
samples is more accurate (lower errors) in terms of both mass flow rate and the power 
consumption over the entire operating envelope, including some extrapolation. 
 
Based on this preliminary analysis, the LHS sampling may be better suited for use with the 10-
coefficient map. The challenge with LHS sampling is that it is based on random number 
generator and as such the samples can change from run to run and the accuracy may not be 
reproducible. Additional analysis in terms of deterministic methods and sensitivity to the number 
of samples points is required. 

7.3 Summary 

Conventional sampling techniques are designed to work with square or rectangular domains. In 
the analysis presented in the previous section, due to availability of over 600 data points 
encompassing the entire operating envelope, it was possible to use the LHS method for sampling 
for use with the AHRI-540 model. 

8 Sampling Based on Non-Rectangular Domains 

8.1 Overview of Sampling Technique 

As mentioned in the previous section, the compressor operating envelope is non-rectangular, and 
hence, conventional sampling techniques are not directly applicable for selecting test points. A 
mathematically sound approach is required to handle non-rectangular domains. 
 
A quick literature review reveals that very minimal work has been done in the area of design of 
experiments for non-rectangular domains. This is because, for most engineering problems, the 
design variables are always bounded and can be always be mapped onto the [0, 1] interval. 
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Furthermore, any non-rectangular domains are handled via linear constraints on the design 
variable during the optimization process. This approach works since optimization is generally 
carried out on models and not on the basis of physical experiments. 
 
There are two main methods published in the literature on space-filling designs for non-
rectangular domains. The first method is by Draguljic et al. (2012) and the second is by Lekivetz 
and Jones (2014). There is no open-source implementation available for either of the two 
methods, and hence, the method by Lekivetz and Jones (2014) was implemented with some 
simplifications as a part of this project. 

8.1.1 Example of Sampling for Non-Rectangular Domains 

This section describes the sampling approach implementation with easy to understand visuals. 
Consider a non-rectangular 2-D domain such as a compressor operating envelope represented on 
a [Te,Tc] plot. Assume it is desired to sample n points inside this domain. The steps in the 
approach are as follows: 
 

1. Start with the non-rectangular domain as shown in Figure 48. 
2. Generate a large number of candidate sample points, either randomly or based on a 

uniform grid. These candidate sample points are superimposed on the design domain as 
shown in Figure 49. Using the conventional methods, such points are generated on a 
rectangular domain, hence these points will span beyond the operating envelope (or 
domain). 

3. Filter the candidate sample points that are outside the operating domain. 
4. Use a clustering algorithm to generate n clusters based on a Euclidean distance metric. 

These clusters are shown in Figure 51. 
5. Compute the convex hull for each of these clusters. These convex hulls are shown in 

Figure 52. Note that some of the polygons corresponding to the convex hulls overlap. 
This is due to the way the clustering technique works. 

6. Use the convex hull information to find the centroids of these clusters. These are show in 
Figure 52. The centroids are marked with a star (*). 

7. The n centroids represented as the (x,y) coordinates are the desired sample points. 
 

 
Figure 48: Example of a non-rectangular domain 
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(a)                                                                                  (b) 
Figure 49: Candidate sample points, (a) 10,000 samples, (b) 40,000 samples 

 

 
Figure 50: Candidate sample points, filtered based on the given domain 
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(a)                                                                        (b) 

Figure 51: Clustering of samples, (a) 10 clusters, 10,000 samples, (b) 12 clusters, 40,000 samples 

 
(a)                                                                           (b) 

Figure 52: Cluster centroids, (a) 10 clusters, 10,000 points, (b) 12 clusters, 40,000 points 
 
The candidate sample points generated in Step-2 can be generated randomly, or out of a 
distribution or based on a uniform grid. In this study, a uniform grid was chosen to maintain 
reproducibility of results from one simulation to another for the same compressor data set. The 
clustering operation in Step-4 is the most computationally expensive part of this approach and 
depends on the number of candidate sample points used. Several numerical experiments were 
carried out to assess the quality of the final samples (i.e., how much they differ based on 
different grid resolution). A grid increment of 0.005 (total of 200 points in each dimension) was 
found to provide a good compromise between speed and sample distribution. 
 
While the above method is an approximate implementation, it has several advantages as follows: 



AHRI Project No. 8013 Final Report  Page 59 
Optimized Thermal Systems, Inc.  May, 2015 

1. It retains the space-filling properties; 
2. The computational cost is very low compared to a true implementation that would require 

one to solve successive optimization problems for each set of samples; 
3. The use of the clustering followed by choosing centroid points guarantees that the 

samples are ‘inside’ the domain and sufficiently away from each of the vertices; and, 
4. Reproducibility. 

8.1.2 Proposed Sampling Approach (PDOE Method) 

For the purposes of the current study, the following sampling strategy is implemented, assuming 
that the compressor operating envelope is given and n total samples are desired. 
 

1. Initialize empty sample set D. 
2. Start with the compressor operating envelope represented as a polygon with k vertices. 
3. Add these k vertices to D. 
4. Sample the remaining (n-k) points using the non-rectangular sampling method described 

in the previous section. 
 
This method is referred to as the Polygon Design of Experiments (PDOE) method for brevity. 
The data representation methods being studied are meant to be used for interpolation purposes. 
As such, adding the k initial vertices is the simplest and the logical starting point. 
 

 
Figure 53: Comparison of samples generated using PDOE and LHS methods 
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Figure 53 shows a comparison of the samples generated using the PDOE method and the LHS 
method. The compressor operating envelope is shown along with the comprehensive data set 
envelope. Notice that the samples generated using the PDOE fall on or within the map dataset 
boundaries, whereas some of the samples generated using the LHS method fall outside the map 
dataset boundaries. This illustrates the challenge that conventional DOE methods were designed 
to operate on rectangular domains and are not suitable for non-rectangular domains. 
 
Figure 54 shows the comparison of the samples generated using the PDOE method and the LHS 
method from a different run for the same data set. Notice that the PDOE samples are the same 
whereas the LHS samples are located in different regions. This is due to the fact that LHS 
method is based on a random starting point and as such each run of LHS design yields a different 
set of samples. This illustrates another challenge with the LHS method for the current application 
as reproducibility is important. 
 

 
Figure 54: Comparison of samples generated using PDOE and LHS methods from a subsequent run 

8.2 Analysis of Different Methods 

The four data representation methods discussed in previous sections were analyzed with regards 
to the number of samples used in generating the performance map. The number of samples that 
were tried were [8, 10, 12, 14, 16]. Appropriate models were chosen for the different number of 
samples. For example, the AHRI-540 model requires a minimum of 11 points and so it cannot be 
used with 8 and 10 samples. Furthermore, comprehensive data sets were available for three 
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separate compressors. These datasets were analyzed separately from the normal (limited) data 
sets. 

8.2.1 Analysis of Comprehensive Data Sets 

This section presents the comparison of model performance for a different number of sample 
points. Three comprehensive data sets are available. The plots shown in this section are for a 
R410A scroll compressor. The verification data points were selected such that they all were 
inside the operating envelope for the compressor performance map for this compressor model. 
The total number of verification points was 478. 
 

 
Figure 55: Effect of number of PDOE samples on mass flow rate errors 
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Figure 56: Effect of number of LHS samples on mass flow rate errors 

 
Figures 55 and 56 show the average absolute percent errors in predicted mass flow rate as a 
function of the different number of samples for different models using the PDOE and the LHS 
methods. Based on this comparison, it appears that the LHS method provides a much better 
average prediction performance for a given number of samples. It is very much possible that this 
performance may change for a different run of the LHS design.  
 

 
Figure 57: Effect of number of PDOE samples of maximum errors in mass flow rate 
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Figure 58: Effect of number of LHS samples on maximum errors in mass flow rate 

 
Figures 57 and 58 show the corresponding results for the maximum absolute percent error in 
mass flow rate. The error in the QIAO model using 10 samples is more than 20%, but is 
truncated at 10% in Figure 58. This is also possible due to the random nature of LHS scheme. 
This shows that while the overall prediction at 10 sample points using the LHS design is better, 
there are areas within the map where in the local errors are unacceptably high. 
 

 
Figure 59: Effect of number of PDOE samples on average error in power 
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Figure 60: Effect of number of LHS samples on average errors in power 

 

 
Figure 61: Effect of number of PDOE samples on maximum error in power 
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Figure 62: Effect of number of LHS samples on maximum error in power 

 
Figures 59-62 show the corresponding errors in predicted power consumption. The average 
errors and the maximum absolute errors for the EMILIO and KLEIN models are significantly 
higher than all of the other models. The scale in the plots is truncated to improve readability. 
Irrespective of the sampling method, the AHRI540 and QIAO models show average errors below 
1%. The maximum absolute errors, on the other hand, are relatively higher. Irrespective of the 
number of samples and the sampling method, the MAEP in predicted power is less than 5% for 
the AHRI540, QIAO and the MPOLY model. For the EMILIO and KLEIN models, the 
maximum absolute errors are more than 30% and, in some cases, more than 100%.  
 
It is important to note here that the AHRI540 and the MPOLY models use independent 
regression for mass flow rate and power prediction, whereas all the other models use the 
predicted mass flow rate in the calculation of power consumption. As such, the errors in 
predicted mass flow rate are indirectly propagated into the power calculation leading to higher 
errors in predicted power. 
 
In order to put these findings into perspective, the verification errors for the AHRI-540 model 
based on the default data set are compared to those using the PDOE sampling method with a 
varying number of points. These errors are shown in Figures 63 and 64. The previously shown 
results correspond to compressor-B. For this analysis, the AHRI-540 model was fitted with data 
points that the manufacturer would typically use to develop the performance map and the 
comprehensive data set was used for verification. Note that only the points within the valid 
operating envelope were used for verification. It is observed that for the same number of source 
points as the default data set, there is marginal improvement (less than 0.5 percent points) when 
systematic sampling is used. But for lower number of samples (e.g. 12, 14), comparable (though 
still within 0.25 percent points) prediction accuracy in terms of average absolute errors can be 
achieved by using systematic sampling method with the AHRI-540 model. This true for both 
mass flow rate and power prediction. 
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Figure 63: AHRI-540 Model, Errors in mass flow rate prediction with default data set and PDOE sampling 

 

 
Figure 64: AHRI-540 Model, Errors in power prediction with default data set and PDOE sampling 
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8.2.2 Analysis of Map Data Sets 

In this section, the previously developed sampling methods are used for the map data sets. We 
note here that this analysis is carried out for the sake of completeness and the results may be not 
be as reliable as the analysis presented in the previous section. 
 
Each of the 43 compressor data sets has data points ranging from 12 to 50. In this analysis, 12 
points are selected out of the available data set using design of experiments. The 12 points 
always include the convex hull of the operating envelope. The remaining points are selected 
based on the points that are closest to the center of the operating envelope. This approach was 
utilized because in this case, the points have already been evaluated and no other experiments 
can be carried out. To keep the analysis simple, only the AHRI540 and the QIAO model were 
compared. The results are presented in Figures 65 and 66. The x-axis labels show the compressor 
dataset name. The first part of this name is the refrigerant (i.e., R134a) and the second part (i.e., 
R, RO, S) represents the compressor type. 
 

 
Figure 65: Average errors in mass flow rate prediction for 12 sample points 
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Figure 66: Average error in power prediction for 12 samples points 
 
It can be seen that for several compressor models, the average absolute error in predicted mass 
flow rate is significantly higher for the AHRI540 model. This is true for the power prediction as 
well. This is expected, since the minimum number of points required for the AHRI540 model is 
11 and with 12 points, there isn’t enough information to develop a good regression model. The 
QIAO model, on the other hand, behaves much better since it requires only 6 data points and is 
partly physics based. It is also observed that the QIAO model has higher errors as compared to 
the AHRI540 model for most scroll compressors. 

9 Conclusions and Recommendations 

Conclusions are summarized in the subsections below and have been organized according to the 
different tasks conducted for Project 8013 completion. Note that additional queries regarding the 
analysis conducted for this project were addressed through a series of Project Update Meetings 
with the Project Committee. For completeness, responses to questions received that are not 
otherwise addressed in the report herein, are provided in Appendix D. 

9.1 Manufacturer Survey 

Most manufacturers indicated that more than 14 points were tested to develop the compressor 
performance map as per the AHRI540 standard. Most manufacturers also account for the unit to 
unit variation by testing at least three separate units for the same compressor model. 

9.2 Uncertainty Analysis 

There are several sources of uncertainty in the prediction of compressor performance using maps 
or models. 
 
The most important amongst them are the uncertainty due to measurement and the uncertainty 
due to regression during model development. The measurement uncertainty has been quantified 



AHRI Project No. 8013 Final Report  Page 69 
Optimized Thermal Systems, Inc.  May, 2015 

in the literature. The regression uncertainty was studied in the present work for the AHRI540 
model. The worst case maximum absolute error in predicted mass flow rate across all data sets 
was 17% and that for power was 9%. For most compressors, the high errors occur in the region 
of the envelope with low suction and low discharge dew point temperatures. The average 
uncertainty in power prediction can be as high as 5% and that in mass flow rate prediction can be 
as high as 4%. 

9.3 Comprehensive Analysis of AHRI540 Method 

Three data sets were available for comprehensive comparison of the AHRI540 model predictions 
over the entire operating envelope and beyond (for extrapolation). It was observed that within the 
operating envelope, the AHRI540 model predicted the mass flow rate and power within an 
average error of 1%. But for extrapolated areas, (10°F outside the operating envelope on suction 
and discharge dew point), the worst case errors were as high as 9% in power and 8% in mass 
flow prediction. This indicates that the AHRI540 performance map is not suitable for 
extrapolation purposes. 

9.4 Method of Performance Representation 

A comprehensive literature review was conducted to identify easy-to-use equations for 
compressor performance representation. A total of five methods were analyzed: AHRI540 
(baseline), MPOLY, QIAO, KLEIN and EMILIO.  
 
It should be noted that for the following conclusions, the model was used to predict source data, 
which was used to develop the model in the first place. Strictly speaking, a good regression 
model should predict the source data within 0.5% and reproduce the trend at the same time. 
 
For most of the data sets, the average errors in mass flow rate prediction were better than 2% for 
the AHRI540, MPOLY and QIAO models. The maximum absolute errors were of the order of 
2.5% for the three models.  
 
Significant numerical challenges were encountered during regression for the KLEIN and 
EMILIO models. For these models, the average errors in mass flow rate predictions were of the 
order of 3%, but the maximum errors were more than 7%. In the case of power prediction, the 
AHRI540 and MPOLY models showed average errors of 3%, the QIAO model had errors around 
4% and the KLEIN and EMILIO models exhibited errors greater than 15%. 
 
The error metrics were also analyzed with regards to compressor type, compressor capacity and 
refrigerants. In general, the QIAO and the MPOLY models were more suited for rotary and 
reciprocating compressors than scroll compressors. 

9.5 Effect of Superheat 

As per the AHRI-540 standard, the source data is based on a fixed superheat value of 20°F. But 
in actual use, superheat values can vary. The models were analyzed to evaluate the effect of 
superheat on the power and mass flow rate prediction. Four data sets were available, each with 
20°F and 40°F superheat data. It was found that the AHRI540 model had large (~6%) errors in 
prediction of mass flow rate at 40°F superheat, whereas the other models, which are mainly 
physics-based, showed lower (~3%) errors. The density-based correction proposed in the 
literature was applied to the AHRI540 model and it was found that the predictions were 
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acceptable. The errors in power prediction for the AHRI540 model were lower than 2%, even 
without correction, and were found to be acceptable. For the other models, a strong 
(approximately linear) correlation was observed between the errors in mass flow rate prediction 
and the ratio of suction densities. Similar correlation was observed in the case of power for the 
KLEIN and EMILIO models as well. There was no obvious correlation between the power errors 
and any input parameters for the case of the QIAO model, however this relationship needs 
further investigation. 

9.6 Effect of Sample Size 

Based on the manufacturer survey, at least 14 test points are used develop the AHRI-540 
compressor performance map. It is desired to reduce this testing effort. The physics-based 
models such as QIAO, EMILIO and KLEIN require less than 8 points for model development. A 
study was conducted to evaluate the effect of sample size on the prediction capabilities for the 
various models. Three comprehensive datasets were available for this purpose. The number of 
points tested included [8, 10, 12, 14, 16] points. The number of tests points used for model 
verification was more than 475 for each data set and all were inside the operating envelope. The 
AHRI540 and the MPOLY models cannot be developed with less than 11 points. 
 
One of the challenges was the selection of samples from the operating envelope. The 
conventional Latin Hypercube Sampling (LHS) method was used. A new method (PDOE) from 
the literature for sampling on non-rectangular domains was also implemented. 
 
For the case of mass flow rate, it was found that the LHS method yielded average errors lower 
than 2% for all the sample sizes. However, the maximum absolute errors in mass flow rate were 
higher when there were a lower (<= 10) number of samples. In general, both the LHS and PDOE 
methods yielded similar errors for all models for samples sizes of 12, 14 and 16. Thus, for mass 
flow rate, it is possible to build a model with 12 systematically selected test points. 
 
For power prediction, the average error for LHS and PDOE methods using AHRI540, QIAO and 
MPOLY was lower than 2% for all sample sizes. The KLEIN and EMILIO models exhibited 
significantly high errors. The maximum absolute errors in power prediction were less than 4% 
for the QIAO and MPOLY models for both sampling methods. The errors for 8 samples were 
slightly higher. But in general, the errors were of similar magnitude for 12, 14 and 16 samples. 
For some cases with the LHS method, the errors were unusually high, due the random nature of 
the algorithm. 
 
A similar analysis was carried out on the 43 data sets that included only the points used to generate 
a map. In this case, only 12 points were selected and the errors were computed. It was observed 
that the QIAO model exhibited excellent prediction capabilities compared to the AHRI540 model. 
This is obvious since the QIAO model is physics-based and requires only 6 points for fitting; 
hence, 12 points provide sufficient information for a good regression. It was observed, however, 
that for most scroll compressors, the QIAO model exhibited higher errors than AHRI540 model. 

9.7 Recommendations 

Based on the results of the analysis conducted for this Project, the following observations and 
recommendations are made to improve compressor data representation: 
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1. Reducing the measurement uncertainty is important. Particular attention must be paid 
during measurements involving low suction and low discharge dew point temperatures. 

2. The regression uncertainty has an additive effect on the overall model prediction when 
the measurement uncertainty is factored into the overall model uncertainty. As such, it is 
possible to define a lower bound on the expected uncertainty in model prediction. Higher 
bounds may be possible depending on the availability of data. 

3. In order or reduce the regression uncertainty, numerically stable and linearly regressed 
models should be selected, though this is not always possible for a physics-based power 
prediction model. Mass flow models can be adapted to linear regression. 

4. There is potential for reducing the number of tests used to develop the performance map 
for a compressor. In general, for the models analyzed as a part of this work, a sample size 
of 10 or 12 is recommended. This requires additional verification. 

5. The use of a systematic DOE method is recommended for selection of samples once an 
operating envelope is determined. It should be noted, however, that most DOE methods 
are designed to work with rectangular-domains. 

9.8 Potential Future Work 

Analysis and findings from the present study identify several areas for future work, including the 
following: 
 

1. The data available for analyses in this project was sufficient but not ideal. A 
comprehensive dataset would include test data for each compressor, based on different 
refrigerants, varying superheats and a wide operating envelope beyond the actual 
operating envelope. This will assist in calibrating physics-based models that typically 
require less than 10 test points and can be used for extrapolation. 

2. In the present analysis, all of the available data was based on the standard superheat. It is 
possible to develop a test matrix with less than 16 points that will also be suitable for 
different superheat values and for reasonable extrapolation. Such a test matrix would 
involve tests at multiple suction superheat values. 

3. A systematic DOE approach should be used when selecting points for model calibration 
(i.e., performance representation). Adaptive DOE methods are available in the literature 
that can improve model accuracy for the same number of tests. The drawback is that the 
tests need to be carried out in two or three steps and require model calibration in between 
the tests. 
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Appendix A: Scope of Work 

The specific tasks for this project were defined as follows in the proposal prepared by OTS: 
 
Task 1: Identify, Collect, and Characterize Representative Data 
Approach  
Using AHRI and OTS resources, OTS will identify pertinent performance metric data needed for 
review and analysis and collect such data from various manufacturers for multiple compressor 
types. Note that it is important that multiple data sets for each compressor type from different 
manufacturers are included in the analysis. It is expected that AHRI and manufacturers on the 
project monitoring subcommittee will assist in providing data. All data used in the analysis will 
be made anonymous. 
 
In addition to performance data, OTS will conduct an informal survey with several 
manufacturers regarding the process used to develop their performance coefficients. 
 
Task Details 
This task will include the following sub-tasks: 

a. Evaluate existing compressor performance data. Determine additional needs. 
b. Reach out to industry contacts to obtain more compressor performance data, as 

required. 
c. Conduct an informal survey of at least three compressor manufacturers to understand 

the methods used to develop and issue performance data. 
 
Deliverables 
There are no direct deliverables for this task. A summary of findings will be provided as part of 
the draft technical report issued at the completion of Task 3. Updates will be provided in the 
regular monthly reports. 
 
Task 2: Review Uncertainty Sources and Recommend Methods to Estimate Uncertainties 
in Test Data 
Approach 
Using the data collected in Task 1, OTS will evaluate the potential uncertainty sources and 
values stemming from measurement uncertainty and product to product variation. OTS will use 
established techniques (Coleman and Steele, 2009; Taylor, 1997) for uncertainty analyses. 
 
Task Details and Features 
This task will include the following sub-tasks: 

a. Review ANSI/AHRI Standard 540-2004: Performance Rating of Positive 
Displacement Refrigerant Compressors and Compressor Units. 

b. Determine potential sources of uncertainty including, but not limited to, measurement 
uncertainty and product to product variation. 

c. Using data collected in Task 1, quantify the level of uncertainty for each identified 
source. 

d. Based on calculated results, develop a general methodology and/or guideline for 
estimating uncertainties of product performance. 
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Deliverables 
There are no direct deliverables for this task. A summary of findings will be provided as part of 
the draft technical report issued at the completion of Task 3. Updates will be provided in the 
regular monthly reports. 
 
Task 3: Survey and Evaluate Alternative Methods to Represent Data 
Approach 
Using the data collected from Task 1, and additional uncertainty information gathered in Task 2, 
OTS will identify and evaluate up to three alternative methods to represent compressor 
performance data. The alternative methods will include a mix of black-box (map-based) and 
efficiency based models described in Section I.B.6. Examples of each potential method will be 
developed using actual data collected in Task 1. The accuracy of each method will be evaluated 
based on the number and distribution of test points. 
 
Task Details and Features 
This task will include the following sub-tasks: 

a. Identify potential alternative methods to represent data. 
b. Evaluate potential methods using sample data collected in Task 1 and regression 

analysis. 
c. Determine method accuracies based on the number and distribution of test points. The 

overall method accuracy can be quantified using regression errors. The effect of the 
number and distribution of various points will be evaluated using statistical 
techniques of bootstrapping (recursive sampling) and cross-validation (Aute et al, 
2008). The cross-validation results will assist in finding data points that can be 
omitted without affecting the prediction accuracy.  

 
Deliverables 

a. Reference implementation code (in Matlab or C++, to be decided later) for each of 
the data representation method that is evaluated. 

b. Draft technical report outlining the results and recommendations for Tasks 1, 2, and 
3. This report will be further updated pending completion of Task 4 and feedback 
from the project monitoring subcommittee.  

c. Web meeting to review the draft technical report and progress to date. 
 

Task 4: Recommend a Preferred Method to Develop and Represent Data 
Approach 
With feedback from the project monitoring subcommittee and web meeting following Task 3, 
OTS will further develop one of the methodologies identified in Task 3 to provide a final 
recommendation on how best to develop and represent compressor performance data. Additional 
analysis and example generation will be conducted, to the extent required. One iteration of this 
final recommendation may be pursued upon receipt of additional feedback from the project 
monitoring subcommittee. 
 
Ultimately, it would be best if the proposed methodology could be experimentally tested and 
validated. This would require cooperation of at least one compressor manufacturer. OTS would 
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propose a test matrix for the manufacturer to complete. Results would then be used to validate 
and further improve the proposed methodology. Experimentation would preferably be conducted 
twice: once for the initial data set provided and again for model verification. 
 
Task Details and Features 
This task will include the following sub-tasks: 

a. Further develop the most promising method identified during Task 3. This will involve 
analyzing various design of experiments methods for use with the prediction model 
identified in Task 3. 

b. Develop sample calculations that demonstrate the use of the predictions from the 
promising method in uncertainty estimation. The uncertainty estimation guidelines are 
proposed in Task 2 of this proposal. 

c. Present recommendations in an updated technical report and review with the project 
monitoring subcommittee. 

d. Revise the recommended method and technical report as per subcommittee feedback. 
Incorporate experimental validation results, if available through assistance from AHRI 
and committee compressor manufacturer(s). 

 
Deliverables 

a. Source code for reference implementation (Matlab or C++), for algorithms used to 
analyze the various representation methods. 

b. Final technical report. An updated draft technical report will be provided after the 
completion of Task 4. Once reviewed by the project monitoring subcommittee, the 
report will be revised, as necessary, in order to produce the final technical report. 

c. Two web meetings. The first web meeting will be conducted once the final 
methodology recommendation and updated draft technical report are developed. As 
noted above, the recommended methodology and technical report will then be 
updated, as necessary, based on feedback received during the first web meeting. A 
second web meeting will then follow to review the final recommendations and project 
deliverables. 

 
Task 5: Project Management 
Approach 
OTS will provide monthly update reports, along with invoices, summarizing progress and task 
results to date.  As appropriate, web meetings will be held with the AHRI team to review 
progress and share preliminary results and issues needing discussion.   A kick-off meeting will 
be held at the start of the project to review overall approach and expectations.  A close-out 
meeting will be held at the end of the project to review completed actions and any required steps 
moving forward.  Our budget accounts for a total of four web meetings with AHRI over the 
course of the project. 
 
As noted in the RFP, a technical journal article or technical presentation/paper of progress or 
final results may be desired for presentation at a U.S.-based conference. Should this be 
requested, OTS will modify the final technical report, as appropriate, to meet this request. No 
additional charge would be incurred for adding this task to the project. 
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Deliverables 
a. Monthly invoices and summary reports indicating progress and task results to date. 
b. A total of four web meetings: 1) project kick off; 2) completion of Task 3; 3) initial 

review of recommendations developed out of Task 4; and 4) completion of Task 
4/project close out.  As required, meeting notes will be issued in the form of a 
bulleted summary and action item list in a follow-up email to team members. 

c. A technical journal article or conference paper, at the request of AHRI pending 
project progress and results. 
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Appendix B: Compressor Data Parameters 

Data sets provided to OTS for project analysis included the following parameters: 
 

Table 11: Parameters included in data sets requested for Project 8013 analysis 

Parameter Description 
Compressor Type Type of Compressor 
Manufacturer Identifier; does not have to be a real manufacturer name 
Model Can be real model number, or just an identifier 

Application 
Alphanumeric code to represent the application as described in 
540. 

Displacement Numeric , theoretical/geometrical swept volume 
Clearance Volume Numeric, could be an estimate, or an average value 
RPM Numeric  

Refrigerant 
Refrigerant name as per ASRHAE Refrigerant nomenclature 
standard. 

Unit 
Unit of the same model, if multiple units of the same model are 
tested (indicate 0,1,2,…) 

Test 
Test number, if multiple tests are conducted on the same unit of 
the same model. 

Tdew_Suction Suction dew point 
Tdew_Discharge Discharge dew point 
Suction_Superheat Suction superheat (delta-T) 
Discharge_Superheat Discharge superheat (delta-T) 
Discharge Shell Temperature Shell temperature as measured. 
P_Suction Suction Pressure as measured 
P_Discharge Discharge pressure as measured 
Power_Input Power Input, as measured 
Isentropic Efficiency Compressor efficiency, as calculated from measured data 
Massflow Rate Mass flow rate, as measured 
Current Current , as measured 
Capacity Capacity, as calculated from measured data 
Motor Efficiency Motor efficiency if known. 
T_Uncertainty Uncertainty in temperature measurement, if available 
P_Undertainty Uncertainty in pressure measurement 
M_Uncertainty Uncertainty in mass flow measurement 
A_Uncertainty Uncertainty in Current measurement 
Ambient Temperature  
Oil Circulation Ratio/Rate  
Purity of Refrigerant Blend composition, variation from the standard. 
Capacity Value  
Tdew_Suc_Min Minimum suction dew point for which map is valid 
Tdew_Suc_Max Max suction dew point for which map is valid 
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Tdew_Dis_Min Mininum discharge dew point 
Tdew_Dis_Max Max discharge dew point 

Suction_Superheat 
Suction superheat, as maintained during testing for each point in 
the map data 

Discharge_Superheat discharge superheat 
Power Coefficients  
Mass Flow Rate Coefficients  
Capacity Coefficients  
Current Coefficients  
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Appendix C: Manufacturer Survey Summary 

A total of six responses were received and are summarized for each of the survey questions 
below. 
 

Table 12: Manufacturer survey questions and results 
Question Summary of Responses Received 
What data reduction equations are used? AHRI Standard 540 10-coefficient polynomial 

How many test points are used to 
generate the compressor data map? 

Five of the six manufacturers indicated that they used 
at least 14 points. One manufacturer uses between 5 
and 10 points. 

How many total tests are conducted for 
a single compressor model? Are all 
these tests conducted for the same unit? 

One manufacturer reported 150 tests over 3 units. 
Two manufacturers indicated that 38 tests were 
performed per compressor model. The other three 
indicated between 5 and 14 tests per model. 

How many units of the same model type 
are tested? 

One manufacturer tests three units of the same model. 
The other five use results from one unit only. 

How are the test points generated (grid, 
DOE)? 

Two manufacturers use a grid. The others use the 
rating points for the particular compressor model. 

For extreme envelope operating 
conditions, how is the data generated? 

One manufacturer uses extrapolation for low 
evaporating and high condensing temperatures, while 
another uses extrapolation only for points within 5K 
from a point at which measurement has been taken. 
The other manufacturers reported testing at points 
near the envelope boundaries and do not use 
extrapolation. 

How are the end-points of the envelope 
determined? Are these end-points 
application specific? Are these end-
points manufacturer specific? 

All manufacturers reported that the compressor 
envelope was application specific. One manufacturer 
performs reliability tests to determine the envelope. 

What kind of validation is conducted, if 
any, for extrapolated data points? Are 
these points simulated or 
experimentally tested? 

All manufacturers indicated that there is no validation 
performed for extrapolated points. 

How is data shifted, if at all, through the 
two rating points (for Unitary AC)? 

One manufacturer reported that the data could be 
skewed to the rating points by repeating the data for 
those points in the data reduction process.  Another 
indicated that data may be shifted directly through the 
two rating points or by shifting the rating curves a 
fixed percentage. 

What errors, if any, are observed from 
this process? 

Of the two manufacturers responding to the above 
question, one indicated that the errors at the extremes 
may increase. The other indicated that errors are 
calculated for tested vs. predicted values and for 
tested vs. shifted values. 
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Is testing done in-house, or at a third 
party laboratory? If both, what 
percentage of testing and what type of 
testing is conducted in-house vs. at a 
third party laboratory? 

All six manufacturers reported testing done in-house.

What are typical accuracies of 
measurement instruments involved? 

Responses varied significantly. Ultimately, these 
responses were not utilized for analysis.  

Are there other methods for data 
reporting or representation your 
company has recently used or 
considered? 

No other data representation methods were 
considered. 

What is the standard practice in terms of 
assessing refrigerant purity? 

There is no established practice. See the summary 
presented in Section 4 for additional details. 

Please provide any additional comments 
you would like to share. 

None were offered. 
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Appendix D: Responses to Additional Project Questions Presented by the 
Project Committee 

The following section outlines several comments received from the Project Committee that are 
not otherwise addressed in the body of the report. Reviewer comments are in Red; OTS 
responses are in Black. 
 
Have you considered using suction and discharge pressures rather than dew point temperatures 
as the parameters in the ARI-540 model?  If so, is there any improvement? 
>> There is no improvement across the board. This can also be deduced based on the logarithmic 
(or a rational-polynomial) relationship between dew point pressure and temperature. Substituting 
such relation into the current Temperature based equation essentially yields another polynomial 
with equivalent coefficients but no improvement in the prediction ability. 
 
Is the comparison made in Section 6.4 comparing each model vs, the source data (in which case 
AHRI540 would obviously perform well), or against the more extensive validation data set(s)? 
>> The comparison is made against the source-data itself. This is mentioned in the two sentences 
immediately following Table 9. We also agree with the observation that the AHRI540 model 
would obviously perform well but only for the cases wherein the source data was actually 
generated by using a fitted polynomial and NOT measured. 
 
The last sentence in Section 6.3.1 indicates the Chebychev polynomials had much better fit 
measures, but did not represent the underlying physics. AHRI540 also does not represent 
underlying physics and is pointed out in Section 6.1, that extrapolation can result in significant 
prediction errors. Does the complexity of using the Chebychev polynomials a prohibitor from 
working further in that direction? Can you provide some further insight into the forms you 
evaluated? 
>> Between any two given source points, the value of a Chebychev polynomial can practically 
go to infinity and it can still pass through the two given points. This is the challenge with 
Chebychev polynomials. Our statement in the report about not representing underlying physics is 
partially correct in this context. We tried various Chebychev polynomials with different orders, 
but were not able to find a consistent equation that would represent the given data. 
 
I am somewhat disappointed that a better fitting physics based model with fewer regression 
terms didn’t result from your study.  I am also somewhat concerned that your study seems to 
suggest that 12 data points are sufficient for good model accuracy.  
>> We agree with your observation. In the present study, we used all the data that we had 
available. There is not enough data to calibrate a better fitting physics based model. We have 
included several physics based models from the literature but their predictions are not as good as 
we would want them to be. This can be attributed to various factors including measurement 
uncertainty and limits of repeatability. The suggestion about 12 points implies that these are 
chosen in a systematic manner based on the underlying equation that you are trying to fit. 
 
A plot of calculated mass flow rate against suction dew point temperature is presented in which 
the mass flow rate was negative. 
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>> It is possible for some of the polynomial equations to yield zero or negative values. Typically 
the higher order (3rd order terms in present case) terms are the ones that cause such behavior. 
One approach to avoid this is to solve the zero(s) of the resulting polynomial equation and check 
if the solution lies within the operating envelope. 
 
In our analysis, we investigated this issue in quite a bit of detail. When we analyze Fit statistics 
for the current 10-coefficient polynomial, it is observed that several of the terms in the fit are not 
statistically significant. Regression analysis guidelines dictate that such terms should be removed 
from the fit. 
 
There is an approach in the literature that facilitates the manipulation terms of an equation in an 
automated fashion. We used this approach to find the statistically “best” equation to represent 
mass flow rate and power consumption for each of the data sets. 
 
Refer to the fit details for one particular case of fitting mass flow rate shown in Figures 67 and 
68. In particular, refer to the column of p-Values in the first case, vs. the second case. Note that 
the second case has much better p-values and also a lower number of terms in the regression. 
 

 
Figure 67: Fit details for mass flow rate prediction 
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Figure 68: Fit details for mass flow rate prediction, step-wise fit 

 
We investigated various functional forms for mass flow rate and power fitting. As observed from 
the screenshots below in Figures 69 and 70, there was no consistent equation set applicable to all 
compressor types and all fluids. 
 

 
Figure 69: Different equations for mass flow rate predictions 
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Figure 70: Different equations for power prediction 

 
The interesting observation from this analysis is that the overall errors in prediction are 
essentially the same when using the full 10 coefficient equation vs. using only the statistically 
significant terms. 
 
For the Section “Sampling Based on Non-Rectangular Domains,” were simple changes in 
variable examined, where they may then have a rectangular domain to proceed with LHS 
sampling?  For example, TE and Compression Ratio could be used as domain variables instead 
of TE, TC. 
>> We did examine some of these variable changes, but they do not result in a rectangular 
domain. As an example, refer to the [Te,Tc] and [Te,Pr] plots below in Figures 71 and 72. Pr is 
the pressure/compression ratio. 

 

 
Figure 71: Compressor performance map, operating envelope, [Te,Tc] 
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Figure 72: Compressor performance map, operating envelope [Te,Pr] 

 
What were the standard deviations used for the ASHRAE 23 measurement accuracies for the 
Monte Carlo analysis? 
>> The analysis was carried out assuming Normal distributions for all parameters. The standard 
deviation for temperature was 0.5F and for other parameters (mass flow and power), was 1%. 


