ANSI/AHRI Standard 510-2006
(Formerly ARI Standard 510-2006)

Standard for 2006
Performance Rating Of Positive Displacement Ammonia Compressors and Compressor Units
IMPORTANT

SAFETY DISCLAIMER

AHRI does not set safety standards and does not certify or guarantee the safety of any products, components or systems designed, tested, rated, installed or operated in accordance with this standard/guideline. It is strongly recommended that products be designed, constructed, assembled, installed and operated in accordance with nationally recognized safety standards and code requirements appropriate for products covered by this standard/guideline.

AHRI uses its best efforts to develop standards/guidelines employing state-of-the-art and accepted industry practices. AHRI does not certify or guarantee that any tests conducted under its standards/guidelines will be non-hazardous or free from risk.

Note:

This standard supersedes ARI Standard 510-93.
TABLE OF CONTENTS

SECTION	PAGE
Section 1. Purpose | 1
Section 2. Scope | 1
Section 3. Definitions | 1
Section 4. Test Requirements | 2
Section 5. Rating Requirements | 3
Section 6. Minimum Data Requirements for Published Ratings | 4
Section 7. Marking and Nameplate Data | 4
Section 8. Conformance Conditions | 4

TABLES

Table 1. ARI Standard Rating Conditions for Ammonia Compressors and Compressor Units (Based on 90.0°F [32.2°C] Ambient Temperature and No Liquid Subcooling Except for Booster and Compound Units) | 3

APPENDICES

Appendix A. References – Normative | 5
Appendix B. References – Informative | 5
PERFORMANCE RATING OF POSITIVE DISPLACEMENT AMMONIA COMPRESSORS AND COMPRESSOR UNITS

Section 1. Purpose

1.1 Purpose. The purpose of this standard is to establish for Positive Displacement Ammonia Compressors and Compressor Units: definitions; test requirements; rating requirements; minimum data requirements for Published Ratings; marking and nameplate data and conformance conditions.

1.1.1 Intent. This standard is intended for the guidance of the industry, including manufacturers, engineers, installers, contractors and users.

1.2 Review and Amendment. This standard is subject to review and amendment as technology advances.

Section 2. Scope

2.1 Scope. This standard applies to Positive Displacement Ammonia Compressors (Ammonia Compressors) and Compressor Units (Ammonia Compressor Units) for use in commercial and industrial refrigeration applications.

2.1.1 Refrigerant. This standard applies to compressors and compressor units using ammonia (R717), as defined in ANSI/ASHRAE Standard 34 with Addenda.

Section 3. Definitions

All terms in this document shall follow the standard industry definitions in the current edition of ASHRAE Terminology of Heating, Ventilation, Air-Conditioning, and Refrigeration unless otherwise defined in this section.

3.1 Efficiency. The Efficiency of an Ammonia Compressor shall be expressed in one of two ways:

3.1.1 Brake horsepower per ton of refrigeration (BHP/TR). A ratio of the shaft horsepower consumption to the Refrigerating Capacity, expressed in BHP/TR

\[
\text{BHP/ton} = \frac{\text{BHP input}}{\text{tons refrigeration effect}}
\]

3.1.2 Coefficient of Performance (COP). A ratio of cooling capacity in kilowatts [kW] to the brake power input value in brake kilowatts [BkW] at any given set of Rating Conditions expressed in kilowatts/brake kilowatts [kW/BkW].

\[
\text{COP} = \frac{\text{kW refrigeration effect}}{\text{BkW input}}
\]

3.2 Manufacturer. For the purpose of this standard, the company or organization which evidences its responsibility by affixing its name or its nationally registered trademark or trade name to the Ammonia Compressor or Ammonia Compressor Unit.

3.3 Positive Displacement Ammonia Compressor (Ammonia Compressor). A compressor in which an increase in ammonia vapor pressure is attained by changing the internal volume of the compression chamber. The compressor may have service valves supplied by the manufacturers.

3.3.1 Booster Compressor. A compressor applied to the low stage(s) of a multi-stage refrigeration system.
3.3.2 *Internally Compounded Compressor.* A compressor in which compression is accomplished in two or more stages within the same compressor body.

3.3.3 *Reciprocating Piston Compressor.* A compressor in which pistons are moved in cylinders by means of rods connected to a crankshaft with a fully-enclosed crankcase subjected to refrigerant pressure.

3.3.4 *Rotary Screw Compressor.* A compressor in which mating screws or a single screw with gate rotor(s) are used for displacement purposes.

3.3.5 *Rotary Vane Compressor.* A compressor in which an eccentrically located rotor with a vane or vanes is used for displacement purposes.

3.4 *Positive Displacement Ammonia Compressor Unit (Ammonia Compressor Unit).* A combination of any of the above Positive Displacement Ammonia Compressors with or without prime mover(s) mounted on a structural base with accessories, such as strainers, service valves, check valves, suction filters, oil separators, etc., as supplied or specified by the Manufacturer.

3.5 *Power Input.* The compressor shaft power, brake horsepower BHP [brake kilowatts BkW].

3.6 *Published Rating.* A statement of the assigned values of those performance characteristics, under stated Rating Conditions, by which a unit may be chosen to fit its application. These values apply to all units of like nominal size and type (identification) produced by the same Manufacturer. The term Published Rating includes the rating of all performance characteristics shown on the unit or published in specifications, advertising or other literature controlled by the Manufacturer, at stated Rating Conditions.

3.6.1 *Application Rating.* A rating based on tests performed at application Rating Conditions (other than Standard Rating Conditions).

3.6.2 *Standard Rating.* A rating based on tests performed at Standard Rating Conditions.

3.7 *Rating Conditions.* Any set of operating conditions under which a single level of performance results and which causes only that level of performance to occur.

3.7.1 *Standard Rating Conditions.* Rating Conditions used as the basis of comparison for performance characteristics.

3.8 *Refrigerating Capacity.* The capacity associated with the increase in total enthalpy between the liquid refrigerant entering the expansion valve and superheated return gas multiplied by the mass flow rate of the refrigerant. tons [kW]

3.9 "Shall" or "Should," shall be interpreted as follows:

3.9.1 *Shall.* Where "shall" or "shall not" is used for a provision specified, that provision is mandatory if compliance with the standard is claimed.

3.9.2 *Should.* "Should" is used to indicate provisions which are not mandatory, but which are desirable as good practice.

3.10 *Subcooling.* The reduction in temperature of refrigerant liquid below its saturation temperature.

3.11 *Superheat.* Additional heat in a vapor when at a temperature higher than the saturation temperature corresponding to its pressure.

Section 4. Test Requirements

4.1 *Test requirements.* All Published Ratings shall be verified by tests conducted in accordance with ANSI/ASHRAE Standard 23.
Section 5. Rating Requirements

5.1 Standard Rating of an Ammonia Compressor. A Standard Rating of an Ammonia Compressor, with stop valves if supplied by the Manufacturer, consists of a Refrigerating Capacity, shaft Power Input and Efficiency, identified at its ARI Standard Rating Condition and group designation from Table 1. The actual compressor speed (rpm) [rev/s] at Rating Conditions shall be stated.

5.2 Application Rating of an Ammonia Compressor. An Application Rating of an Ammonia Compressor, with stop valves if supplied by the Manufacturer, consists of a Refrigerating Capacity, shaft Power Input and Efficiency at completely stated conditions other than those presented in Table 1. The actual compressor speed (rpm) [rev/s] at Rating Conditions shall be stated.

5.3 Standard Rating of an Ammonia Compressor Unit. A Standard Rating of an Ammonia Compressor Unit with all mounted accessories supplied by the Manufacturer consists of a Refrigerating Capacity, shaft Power Input and Efficiency, identified at its ARI Standard Rating Condition and group designation from Table 1. The actual compressor speed (rpm) [rev/s] at Rating Conditions shall be stated.

5.4 Application Rating of an Ammonia Compressor Unit. An Application Rating of an Ammonia Compressor Unit with all mounted accessories supplied by the Manufacturer consists of a Refrigerating Capacity, shaft Power Input and Efficiency at completely stated conditions other than those presented in Table 1. The actual compressor speed (rpm) [rev/s] at Rating Conditions shall be stated.

Table 1. ARI Standard Rating Conditions for Ammonia Compressors and Compressor Units (Based on 90.0°F [32.2°C] Ambient Temperature and No Liquid Subcooling Except for Booster and Compound Units)

<table>
<thead>
<tr>
<th>Group Designation</th>
<th>Saturated Suction Temperature</th>
<th>Return Gas Temperature</th>
<th>Saturated Discharge Temperature</th>
<th>Liquid Temperature Above Interstage Saturation Temperature (Temperature Difference)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°F</td>
<td>°C</td>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>A</td>
<td>20.0</td>
<td>-6.70</td>
<td>30.0</td>
<td>-1.11</td>
</tr>
<tr>
<td>B</td>
<td>5.00</td>
<td>-15.0</td>
<td>15.0</td>
<td>-9.44</td>
</tr>
<tr>
<td>C</td>
<td>-10.0</td>
<td>-23.3</td>
<td>0.00</td>
<td>-17.8</td>
</tr>
<tr>
<td>*D</td>
<td>-40.0</td>
<td>-40.0</td>
<td>-30.0</td>
<td>-34.4</td>
</tr>
<tr>
<td>*E</td>
<td>-40.0</td>
<td>-40.0</td>
<td>-30.0</td>
<td>-34.4</td>
</tr>
</tbody>
</table>

*Compound Compressor Unit
**Booster Compressor Unit

5.5 Refrigerating Capacity shall be calculated using the following:

\[q = \dot{m} \cdot c \cdot (h_1 - h_s) \]

where:

\[q = \text{Refrigerating Capacity, tons [kW]} \]
\[\dot{m} = \text{Mass flow rate, lbm/min [kg/min]} \]

If Superheat is not applied at the compressor suction, the mass flow rate shall be determined by using the corresponding saturated suction gas density at the compressor or unit suction flange.

If Superheat is applied at the compressor suction, the mass flow rate shall be determined by using the corresponding superheated gas density at the compressor or unit suction flange.
c = 1/200 tons/(btu/min) [1/60 kW/(kJ/min)]

\[h_1 = \text{Enthalpy of ammonia vapor, btu/lbm [kJ/kg]} \]

If Superheat is not applied, \(h_1 \) is the saturated vapor enthalpy that corresponds to the Ammonia Compressor or Compressor Unit suction pressure.

If Superheat is applied, \(h_1 \) is the superheated vapor enthalpy that corresponds to the Ammonia Compressor or Compressor Unit suction pressure and temperature.

\[h_2 = \text{Enthalpy of saturated ammonia liquid, btu/lbm [kJ/kg]} \]

If Subcooling is not applied, \(h_2 \) is the saturated liquid enthalpy that corresponds to the Ammonia Compressor or Compressor Unit discharge pressure.

If Subcooling is applied, \(h_2 \) is the saturated liquid enthalpy that corresponds to the Ammonia Compressor or Compressor Unit discharge pressure at the reduced temperature.

5.6 Tolerances. To comply with this standard, measured test results shall not be less than 95% of Published Ratings for Refrigerating Capacity and Efficiency, and shall be no more than 105% of the rated Power Input.

Section 6. Minimum Data Requirements for Published Ratings

6.1 Minimum Data Requirements for Published Ratings. As a minimum, Published Ratings shall include all Standard Ratings. All claims to ratings within the scope of this standard shall include the statement “Rated in accordance with ARI Standard 510.” All claims to ratings outside the scope of this standard shall include the statement “Outside the scope of ARI Standard 510.” Wherever Application Ratings are published or printed, they shall include a statement of the conditions at which the ratings apply.

Section 7. Marking and Nameplate Data

7.1 Marking and Nameplate Data. As a minimum, the nameplate shall include:

a. Manufacturer’s name and/or symbol
b. Manufacturer’s model number
c. Manufacturer’s identification number (serial number)
d. Refrigerant
e. Maximum design working pressure
f. Maximum permissible speed

Section 8. Conformance Conditions

8.1 Conformance Conditions. While conformance with this standard is voluntary, conformance shall not be claimed or implied for products or equipment within the standard’s Purpose (Section 1) and Scope (Section 2) unless such product claims meet all of the requirements of the standard and all of the testing and rating requirements are measured and reported in complete compliance with the standard. Any product that has not met all the requirements of the standard shall not reference, state, or acknowledge the standard in any written, oral, or electronic communication.
APPENDIX A. REFERENCES – NORMATIVE

A.1 Listed here are all standards, handbooks, and other publications essential to the formation and implementation of the standard. All references in this appendix are considered as part of the standard.

APPENDIX B. REFERENCES – INFORMATIVE

B.1 Listed here are standards, handbooks, and other publications which may provide useful information and background but are not considered essential. References in this appendix are not considered part of the standard.
