EVALUATION OF HFC-245ca FOR COMMERCIAL USE IN LOW PRESSURE CHILLERS

FINAL REPORT Volume I

Prepared by:

Edward F. Keuper Principal Investigator and F. Byron Hamm Compressor Performance Analyst

> Paul R. Glamm Project Manager

The Trane Company 3600 Pammel Creek Road LaCrosse, Wisconsin 54601

March, 1996

Prepared for: The Air-Conditioning and Refrigeration Technology Institute Under ARTI MCLR PROJECT NO. 665-53300

This project is supported, in whole or in part, by U.S. Department of Energy, Office of Building Technology, grant number DE-FG02-91CE23810: Materials Compatibility and Lubricants Research (MCLR) on CFC-Refrigerant Substitutes. Federal funding supporting the MCLR program project constitutes 93.57% of allowable costs. Funding from the air-conditioning and refrigeration industry supporting the MCLR program consists of direct cost sharing of 6.43% of allowable costs, and significant in-kind contributions.

DISCLAIMER

The U.S. Department of Energy and the air-conditioning industry's support for the Materials Compatibility and Lubricants Research (MCLR) program does not constitute an endorsement by the U.S. Department of Energy or by the air-conditioning and refrigeration industry, of the views expressed herein.

NOTICE

This report was prepared on account of work sponsored by the United States Government. Neither the United States Government, nor the Department of Energy, nor the Air-Conditioning and Refrigeration Technology Institute (nor any of their employees, contractors, or subcontractors) makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned patents.

COPYRIGHT NOTICE

(for journal publication submissions)

By acceptance of this article, the publisher and/or recipient acknowledges the right of the U.S. Government and the Air-Conditioning and Refrigeration Technology Institute. Inc. (ARTI) to retain a non-exclusive, royalty-free license in and to any copyrights covering this paper.

OTHER ACKNOWLEDGMENTS

HFC-245ca is not commercially available, so we give a note of thanks to AlliedSignal and the Electric Power Research Institute for providing the HFC-245ca (at their own considerable expense) needed to conduct chiller and heat transfer bench tests. In addition, AlliedSignal also provided the thermodynamic property correlations used to reduce the data.

EVALUATION OF HFC-245CA FOR COMMERCIAL USE IN LOW PRESSURE CHILLERS ARTI MCLR PROJECT NUMBER 665-53300 Paul Glamm, Byron Hamm, Ed Keuper

ABSTRACT

Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after. January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles.

Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost. Conclusions from this project include the following:

- HFC-245ca will not perform satisfactorily when substituted for CFC-11 or HCFC-123 in existing chillers with no hardware changes due to surge concerns. For HFC 245ca to perform satisfactorily in a retrofit situation, the compressor must be modified with larger impellers, will likely need a larger motor and drive system, and in many instances will require a new compressor casing. The high cost of replacing compressors and drive systems is justified only in special situations driven by financial considerations at the job site.
- Chillers designed specifically for use with HFC-245ca can provide performance comparable to HCFC-123 chillers with some increase in heat transfer surface cost. This design is not commercially viable today because HFC-245ca is not available in commercial quantities, and the market resistance to refrigerants with Class 2 flammability ratings discourages the development of processing plants to commercially produce HFC-245ca.
- Although the flammability of HFC-245ca may be reduced by blending HFC-245ca with various flame suppressant compounds, addition of these compounds will degrade chiller performance and present significant technical challenges in heat exchanger design.
- The industry should continue to investigate cost effective methods for using high performance marginally flammable refrigerants such as HFC-245ca.

TABLE OF CONTENTS

ABSTRACT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	1
SCOPE	2
SIGNIFICANT RESULTS Background Safety and Environmental Issues Theoretical Performance Project Objectives Experimental Results Chiller Test Plan Chiller Performance Compressor Performance Heat Exchanger Performance Single Tube Performance Blend Performance	2 4 5 7 8 9 9 9 10
Commercial Viability Assessment Retrofit Applications Material Compatibility Drop-in Performance Impeller Replacement Compressor Replacement New Products	11 11 12 14 15
Conclusions and Recommendations	16
COMPLIANCE WITH AGREEMENT PRINCIPAL INVESTIGATOR EFFORT FIGURES	17 17 18+
APPENDIX A. Description of Surge APPENDIX B. Chiller full load performance summaries	62 64

VOLUME II (CHILLER TEST DATA) Volume II is a separate document and contains the chiller test data in both Imperial and Metric units. Both raw data and reduced data such as heat transfer coefficients and compressor adiabatic efficiency are provided in Volume II.

List of Figures

Figure	Description
1	Single Stage Cycle Diagram
2	Three Stage with Two Economizers Cycle Diagram
3	Chiller Capacity Oil Comparison
4	Chiller Power Consumption Oil Comparison
5	Chiller Efficiency Oil Comparison
6	Condenser Water Temperature at Surge vs. Guide Vanes 25/25/24.5 Impellers
7	Capacity vs. Condenser Entering Water Temperature 26/26/26 Impellers
8	Power vs. Condenser Entering Water Temperature 26/26/26 Impellers
9	Efficiency vs. Condenser Entering Water Temperature 26/26/26 Impellers
10	Capacity vs. Condenser Entering Water Temperature 25/25/24.5 Impellers
11	Power vs. Condenser Entering Water Temperature 25/25/24.5 Impellers
12	Efficiency vs. Condenser Entering Water Temperature 25/25/24.5 Impellers
13	Capacity vs. Condenser Entering Water Temperature Optimum Diameter Impellers
14	Power vs. Condenser Entering Water Temperature Optimum Diameter Impellers
15	Efficiency vs. Condenser Entering Water Temperature Optimum Diameter Impellers
16	Power vs. Capacity for CFC-11 Conversion with and without Impeller Change out
17	Compressor Efficiency Map of 26/26/26 Impellers
18	Compressor Efficiency Map of 25/25/24.5 Impellers
19	Condenser Refrigerant Side Heat Transfer Coefficient vs Heat Flux
20	Evaporator Refrigerant Side Heat Transfer Coefficient vs Heat Flux
21	Single Tube Pool Boiling Test - CFC-11 and HFC-245ca
22	Single Tube Condensing Test - CFC-11 and HFC-245ca
23	Single Tube Pool Boiling Test - HCFC-123 and HFC-245ca
24	Single Tube Condensing Test - HCFC-123 and HFC-245ca
25	Heat Transfer Area vs Efficiency
A-1	Surge Limits

SCOPE

Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles.

SIGNIFICANT RESULTS

BACKGROUND

This section describes the safety, environmental, and performance characteristics of HFC-245ca leading to its selection for this study.

Safety and Environmental Issues

In spite of an intensive and thorough search for CFC-11 substitutes, the air conditioning industry has not found an ideal refrigerant for application to centrifugal chillers. J. Calm stated that "in addition to having the desired thermodynamic properties, an ideal refrigerant should be non-toxic, nonflammable, completely stable inside a system, environmentally benign even with respect to decomposition products, and abundantly available or easy to manufacture There are additional criteria, but no current refrigerants are ideal even based on this partial list. Furthermore, no ideal refrigerants are likely to be discovered in the future.¹¹ Hence, compromises on the various attributes of refrigerants must be made. The industry has chosen to invest heavily in low pressure centrifugal chillers designed for HCFC-123 and in medium pressure centrifugal chillers designed for HCFC-123 and in medium pressure cand environmental characteristics as shown in Table 1. HFC-134a is not a low pressure refrigerant and thus not a drop in replacement candidate for CFC-11. However, HFC-134a has proven to be a very viable refrigerant for use in medium pressure centrifugal and positive displacement chillers.

Refrigerant Ozone		Atmospheric	Direct GWP	Theoretical	ASHRAE 34
-	Depletion	Life in	100 year	COP	Flammability
	Potential	Years	horizon		Classification*
CFC-11	1.00	50	4000	7.57	1
HCFC-123	.016	1.4	93	7.43	1
HFC-245ca	0.00	7	610	7.33	2**
HFC-134a	0.00	14	1300	6.94	1

Table 1. CFC-11 Alternatives for Centrifugal Chillers

¹ Calm, J.M. "Refrigerant Safety" ASHRAE Journal, July 1994. p. 18

* Class 1=No flame propagation, Class 2=lower flammability, Class 3=higher flammability

** HFC-245ca has not been classified by SSPC34, but test data suggest a "lower flammability" rating would be appropriate.

The theoretical COP of HCFC-123 is close to that for CFC-11 and supports the manufacture of chillers with very high efficiency. HFC-134a has zero ozone depletion potential, but has higher direct global warming potential (GWP) and less attractive thermodynamic properties. HFC-245ca also has a very attractive theoretical COP, an atmospheric lifetime between that for HCFC-123 and HFC-134a, but has been shown to be marginally flammable. What's marginally flammable? Like all fluorocarbon refrigerants, HFC-245ca will participate in, and react with, an existing fire and decompose. In the process many fluorocarbons will release a small amount of heat depending on the hydrogen and carbon content. As shown in Table 2, HFC-245ca lies between HFC-134a (Class 1) and HFC-32 (Class 2) in terms of heat of combustion and so has been called "marginal".

Refrigerant	Heat of	Heat of	Pressure	Pressure
-	Combustion	Combustion	Rise, kPa	Rise, psia
	mJ/Kg	Btu/Lbm		
HFC-125	-1.5	-645	0	0
CFC-11	0.9	387	0	0
HCFC-123	2.1	903	0	0
HCFC-22	2.2	946	0	0
HFC-134a	4.2	1806	0	0
HFC-245ca	7.1	3053	6.9	1
HFC-32	9.4	4041	?	?
HFC-152a	16.9	7266	186 to 510	27 to 74
Ammonia	22.5	9673	?	?
Propane	50.3	21,625	?	?

Table 2. Flammability Data

In addition, the pressure rise for HFC-152a (Class 2) is 27 psi (186 kPa) while for HFC-245ca the pressure rise is 1 psi² (6.9 kPa) and zero for HFC-134a, again marginal. According to a study by Arthur D. Little³, the nature of the damage from over-pressure by 0.1 to 1.0 psi is the shattering of glass windows. From 1 to 2 psi results in failure of wood siding panels, shattering of asbestos siding and corrugated steel and aluminum panel failure. Over-pressure of 15 psi would result in lung damage to people and severe damage to structures.

The industry recognizes that a -major effort would be required to work with the standards and codes organizations to identify cost effective methods of using HFC245ca as safely as we use Class 1 refrigerants today. However, that effort can only be

² Phone conversation with Rajiv Singh of Allied Signal, July 7, 1995.

³ Arthur D. Little, Inc. "**Risk Assessment of Flammable Refrigerants for Use in Home Appliances**", Revised Draft Report, September, 1991.

justified if the performance of HFC-245ca has been proven in the laboratory and the application deemed commercially viable exclusive of the flammability issue.

How difficult will it be to identify cost effective methods of using HFC-245ca as safely as Class 1 refrigerants? Consider the following: HFC-245ca has no measurable flash point and will not sustain a flame in dry air at room temperature. However, by ASHRAE 34 and UL-2182 flammability test conditions, HFC-245ca is expected to carry a Class 2 rating of "lower flammability". Use of a Class 2 refrigerant according to ASHRAE 15 requires, in addition to the class 1 requirements, a one-hour fire-resistant rating for the machinery room and compliance with Class 1 Division 2 of the National Electrical Code. ASHRAE 15 and the NEC call a machinery room with a Class 2 refrigerant a "hazardous location." Thus, to use HFC-245ca as safely and cost effectively as a Class 1 refrigerant, the industry must resolve the safety and cost issues associated with ASHRAE 15 and the marketing issues of dealing with a "hazardous location."

Several studies have indicated that "true risk" does not come in discreet increments but is rather a continuum. For example, Calm writes "Recognition is growing that all refrigerants containing hydrogen (including HCFCs and HFCs) are potentially combustible under some conditions." ⁴ Dekleva writes: "...as the industry scrutinizes this parameter (flammability/combustibility) more closely (especially in light of the new refrigerants), the absolute measure of reactive and non-reactive (flammable and non-flammable/combustible) becomes smeared." ⁵ Thus, the potential Class 2 rating for HFC-245ca may be overstating the real risk associated with its use, but that may be sufficient to prevent its commercialization. Continued assessment of the risks associated with the use of marginally flammable refrigerants such as HFC-245ca is desirable along with a review of the technical requirements for classification of refrigerants.

Theoretical Performance

Many of the low pressure chillers produced today and in the past have contained 3 stages of compression plus economizers between stages, so an analysis of the theoretical performance of HFC-245ca in this class of equipment is appropriate.

Single and three stage refrigeration cycles are illustrated on temperature-enthalpy diagrams in Figures 1 and 2 respectively. The processes portrayed in Figure 1 are typically described as shown in Table 3.

Process Line	Process	Process Line	Process
1 - 2'	Isentropic Compression	1 - 2	Adiabatic Compression
2 - 3	Desuperheating	3 - 4	Condensing
4 - 5	Adiabatic Expansion	5 - 1	Evaporation
6 - 7	Condenser Water Temp	9 - 8	Evaporator Water Temp

Table 3. Single Stage Process

⁴ Calm, J.M. "**Refrigerant Safety**" ASHRAE Journal, July 1994. p. 22

⁵ Dekleva, T.W., Lindley, A.A., Powell, P. "Flammability and reactivity of select HFCs and mixtures" ASHRAE Journal, December, 1993.

The three stage cycle includes two economizers which separate the liquid and vapor refrigerant after partial expansion and direct the vapor into the compressor between the impellers. The processes portrayed in Figure 2 are typically described as shown in Table 4.

Process Line	Process	Process Line	Process
1 - 2	Adiabatic Compression	7-8&5	Adiabatic Expansion
3 - 4	Adiabatic Compression	8-9&3	Adiabatic Expansion
5 - 6	Adiabatic Compression	9 - 10	Adiabatic Expansion
6 - 7	Desuperheat and	10 - 1	Evaporation
	Condensing		

Table 4. Three Stage Process

This process is more efficient than the single stage process because (1) the vapor separated by the economizers is recompressed from an intermediate pressure rather than from evaporator pressure and (2) the enthalpy of the liquid entering the evaporator is lower by the amount of latent heat of the vapor in the economizer.

Available property data indicate that the pressure-temperature relationship and theoretical efficiency of HFC-245ca are comparable to that of CFC-11 and HCFC-123. Hence HFC-245ca might be suitable both as a drop-in replacement for these refrigerants in existing chillers and as a new product refrigerant. Theoretical performance of the three refrigerants using the best available property data is compared in Table 5. Within experimental accuracy, the performance of the three low pressure refrigerants is indistinguishable in an ideal 3 stage compression cycle.

Refrigerant	Single Stage	Ratio	Three Stage	Ratio
CFC-11	0.52 kW/ton	Base	0.50 kW/ton	0.95
HCFC-123	0.53 kW/ton	1.01	0.50 kW/ton	0.95
HFC-245ca	0.53 kW/ton	1.01	0.50 kW/ton	0.95

* Boundary conditions: zero subcooling, zero superheat, 94% motors with liquid cooling, 83% efficient impellers, 6.1 C (43 F) saturated suction temperature, 35.6 C (96 F) saturated condensing temperature.

PROJECT OBJECTIVES

The objectives of this project include the following:

 Model the performance of HFC-245ca in centrifugal chillers, and estimate drop-in and optimized chiller performance. Drop-in performance estimates will reflect that obtained in CFC-11 and HCFC-123 optimized chillers. Optimized chiller performance estimates reflect the performance expected in a chiller designed specifically for use with HFC-245ca.

- Conduct parametric tests of HFC-245ca in a centrifugal chiller optimized for CFC-11 using saturated temperatures and compressor capacity as variables. The experimental results will be used to confirm the computer models and provide direct comparisons of performance between the three refrigerants.
- Assess the commercial viability of HFC-245ca to retrofit CFC-11 and HCFC-123 chillers in the field and for use in chillers optimized for HFC-245ca.

The technical approach for achieving these objectives includes experimental testing of a 3 stage centrifugal chiller with the three refrigerants, heat transfer testing of single tubes in a bench test facility, confirmation of our computer models for estimating drop-in and optimized performance, assessment of field retrofit experience to date from CFC-11 to HCFC-123, and finally assessing the commercial viability of HFC-245ca in retrofit and new product applications.

EXPERIMENTAL RESULTS

Low pressure centrifugal chillers have been available in single stage and multistage configurations for many years and large numbers of chillers of both designs are in use today. While this study will focus on the hermetic multistage direct drive configuration, the performance trends described in this report will generally apply to both single and multistage chillers.

Chiller Test Plan

A 200 ton 3 stage direct drive centrifugal chiller was selected as the test vehicle for this project because the charge requirements were small enough (about 400 lbm, 182 kg) to provide reasonable limits for the laboratory production of HFC-245ca. In addition, this chiller was built in 1981 and is a suitable representative of chillers which could be considered for retrofit. Three sets of impellers, three refrigerants and two oils were tested in the chiller according to the test matrix shown in Table 6. Trane 22 is a mineral oil and Solest 68 is a polyolester oil. (Trane centrifugal compressors in the field are operated with mineral oil for both CFC-11 and HCFC-123.)

Impeller	Impeller	Oil	CFC-11	HCFC-123	HFC-245ca
Diameter	Diameter				
inches	mm				
26/26/26	660/660/660	Trane 22	Х		
26/26/26	660/660/660	Solest 68	Х	Х	Х
25/25/24.5	635/635/622	Solest 68	Х	Х	Х
24/24/24	610/610/610	Solest 68		Х	

Table 6. Chiller Test Matrix

Baseline tests with both the mineral and polyolester oil were conducted with CFC-11 to verify that the performance of the chiller was insensitive to oil selection, and that the polyolester oil needed for use with HFC-245ca could be used for all subsequent tests without biasing the results. Further, new oil was charged every time refrigerant was changed. Thus, the only variables in the chiller tests were refrigerant selection, water temperatures, and compressor loading. The water flow rates were fixed at 480 gpm (30.3 liters/sec) for the evaporator and 600 gpm (37.9 liters/sec) for the condenser to minimize changes in the water side heat transfer coefficient.

The evaporator leaving water temperature was held at 44 F (6.67 C) for all tests. Condenser entering water temperatures were varied from 70 F (21.1 C) up to the onset of surge or high pressure cutout in 5 F (2.78 C) increments for each of four inlet guide vane settings: 90, 70, 40 and 10 degrees. The highest condenser water temperatures reported were either at surge or just short of high pressure cutout.

Surge is a condition that exists when the centrifugal compressor can no longer supply enough dynamic head to the refrigerant vapor to overcome the enthalpy rise from suction to discharge conditions. This condition is easy to create by simply imposing higher water temperature lift conditions (condenser water temperature minus evaporator water temperature) on the chiller than the compressor can tolerate. Surge manifests itself through significant reductions in mass flow through the compressor and a sharp change in the noise characteristics of the compressor. See Appendix A for a more thorough description of surge.

Although variable orifices (vee-ball valves) were installed in the chiller, the valve settings were not changed once they were optimized for the CFC-11 baseline case. While the results of the chiller tests would vary slightly with the active use of variable orifices, the conclusions from this project would not be affected.

Chiller Performance

All chiller performance data can be found in Volume II. Summaries of the full load results by refrigerant can be found on pages 97, 73 and 25 for the large, medium and small impeller data respectively in Volume II. In addition, the full load results can be found in Appendix B of Volume I.

<u>Oil Effects.</u> The baseline tests confirmed the negligible impact with CFC-11 of oil selection as shown in Figures 3 through 5. The differences in performance between oils were within experimental error, so all subsequent tests used the polyolester oil. We believe that oil selection would likewise have negligible effect on the performance of HCFC-123 and HFC-245ca.

<u>Operating Range.</u> The thermodynamic properties of the three refrigerants show that the compressor lift (enthalpy change through the compressor at fixed saturated temperature conditions) will be the lowest for HCFC-123 and highest for HFC-245ca. The diameters of the three impeller sets were chosen as optimum (providing enough margin in the lift capability to avoid surge during normal operation, while not being so oversized as to compromise efficiency) for each of the three refrigerants. Thus, surge problems would only occur in a retrofit situation with HFC-245ca dropped into a chiller optimized for CFC-11 or HCFC-123. The surge lines (entering condenser water temperature at the onset of surge vs guide vane position) for the 25/25/24.5 impellers (CFC-11 optimum) are plotted in Figure 6, and confirm the lower surge limit for HFC-245ca. This will be a significant problem at full load (90 degree vanes) as the 5F (2.8C) margin over the ARI rating condition will be unacceptable to the customer. Surge tests were not conducted with the 24/24/24 impellers because only HCFC-123 would show adequate margin to the onset of surge. Surge tests with the 26/26/26 impellers and CFC-11 and HCFC-123 refrigerants showed the surge line to be above the high pressure cutout setting.

<u>Effect of Impeller Diameter.</u> Chiller capacity, power consumption and efficiency have been cross plotted vs condenser entering water temperature for the two larger impeller sets as shown in Figures 7 through 12. Although these three refrigerants are very similar, the differences in specific volume and work input requirements are significant as dramatized in this drop-in situation. On the other hand, these differences can be managed very effectively in designs which are unique to each refrigerant, and give us the performance shown in Figures 13 through 15 where we plot the performance of each refrigerant only with its optimum impeller diameter. These data confirm the excellent performance of all three refrigerants. On the other hand, if power is plotted vs capacity for each refrigerant with its properly sized impeller, you find that retrofitting a chiller with larger impellers to handle HFC-245ca in an efficient manner also results in

significantly more power being used by the motor as shown in Figure 16. Thus, retrofits with HFC-245ca will probably need larger motors and power supplies, or blockage of the guide vanes so that the ampere limits are maintained. Limiting the power consumption will significantly reduce the capacity of the chiller with HFC-245ca. Another option suggested by the results shown in Figure 16 is to accept the power and capacity reduction with HFC-245ca dropped into a CFC-11 chiller with no impeller diameter change. This logic is flawed by the surge data shown in Figure 6 which shows that inadequate surge margin exists when using HFC-245ca with impellers designed for CFC-11.

<u>Compressor Performance.</u> The theoretical estimates of performance described in the Background section of this report were based on constant compressor adiabatic efficiency, independent of refrigerant choice. Is this a valid assumption? Using the data obtained from the 26/26/26 and 25/25/24.5 inch impellers, compressor efficiency maps (Figures 17 and 18) were constructed by plotting adiabatic efficiency versus compressor suction volume flow rate at a variety of vane settings. These data show that over the range tested, compressor efficiency is not strongly affected by refrigerant choice, with the larger diameter impellers being about 1% more efficient than the medium size impellers. Thus, the constant adiabatic efficiency assumption is valid for comparing refrigerants.

<u>Heat Exchanger Performance.</u> The condenser performance has been reduced to refrigerant side coefficients for each refrigerant and cross plotted against heat flux as shown in Figure 19. The condenser tube tested is a 35 fin per inch design. The trend lines through the data points suggest only small differences between the refrigerants, with CFC-11 slightly better than HCFC-123 which is slightly better than HFC-245ca.

The evaporator performance has been reduced to refrigerant side coefficients for each refrigerant and cross plotted against heat flux as shown in Figure 20. The evaporator tube is a Wolverine Turbo BII design. The trend lines through the data points show that CFC-11 performance is about 10% better than HCFC-123 performance which in turn is about 10% better than HFC-245ca performance. The performance decrease at the higher heat fluxes results from fixed orifice operation holding up liquid in the condenser at the higher capacities and providing inadequate refrigerant to the evaporator to keep all the tubes wet.

<u>Single Tube Performance.</u> Bench tests of boiling and condensing performance were conducted with two generations of tube. Drop-in behavior was examined with a 35 fins/inch (1378 fins/meter) design commonly used during the 1980's, while newly optimized performance was examined with state of the art surfaces, Turbo BII for boiling and Turbo CII for condensing. The results of the bench tests are plotted against heat flux as shown in Figures 21 through 24. This performance confirms that the HFC-245ca heat transfer coefficients for these tube designs are not as high as those for either CFC-11 or HCFC-123. In addition, the shape of the HFC-245ca condensing curve is contrary to our experience with CFC-11 and HCFC-123 and has not been explained. Because a small error in saturated temperature properties could cause this phenomenon, AlliedSignal revisited the accuracy of their data and concluded no change was justified. Thus, we have no explanation for the shape of the HFC-245ca condensing curve.

Blend Performance.

While this final report was being prepared AlliedSignal suggested that we test a nonflammable blend of HFC-245ca consisting of 25% by weight of 3M's PF5060 (a blend of perfluorohexane compounds) and 75% HFC-245ca. From the beginning the chiller performed poorly with high power consumption. High power consumption is a symptom of system overcharge and significant liquid carryover. Fortunately, the chiller is equipped with a large number of sight glasses and the condition of liquid carryover in the compressor suction and in both economizer vapor lines was confirmed visually. We then began a charge optimization series of runs adjusting the orifices in an attempt to dry out the vapor lines. We were successful in this effort only at very low charge and at low loads where inlet guide vanes were no more than 30% open. We continued to experiment with charge size, orifice settings and guide vane settings for the next five days and were unable at any charge level or orifice setting to open the guide vanes above about 40% without wet suction and/or wet economizer vapor lines.

Consultation with AlliedSignal concerning properties of the mixture revealed that the surface tension of the blend is about half that of pure HFC-245ca and we believe that this is the source of the problem. Surface tension is a measure of a fluid's propensity to form spheres of liquid and reduce its surface to volume ratio. These spheres then separate by gravity from the vapor stream in the vapor spaces of the evaporator and economizer. With this particular blend this agglomeration tendency is greatly reduced. Vapor velocities must be reduced to use this fluid. Given the design of the chiller, the only way is by a low loading. As a consequence we were unable to get any useful performance measurements, but we did learn that the effect on blend surface tension must be considered for any blending compound.

COMMERCIAL VIABILITY ASSESSMENT

The commercial viability of HFC-245ca is addressed from both a retrofit and new product perspective.

Retrofit Applications

Retrofit applications must be concerned with material compatibility, drop-in performance and cost, viability of replacing the impellers, and economics of compressor replacement.

<u>Material Compatibility.</u> Twenty-four common motor materials were tested in a variety of refrigerant and lubricant mixtures as part of the 1995 ARTI/MCLR Project 23810 aimed at identifying retrofit material compatibility problems. Relative to retrofit from CFC-11 or HCFC-123 to HFC-245ca, only one problem was found with motor materials. Specifically, Nomex-Mylar-Nomex sheet insulation raised concern "when pockets of delamination appeared between the layers of sheet insulation".⁶ Here the problem was neither the Nomex nor the Mylar but rather the adhesive which joined them. In the area of elastomers, two materials were tested in various refrigerants and lubricants: neoprene and nitrile. The neoprene exhibited shrinkage and may be unsatisfactory for use with HFC-245ca. Trane direct drive 3 stage chillers in use in the United States were not produced with either of these potentially incompatible materials. The materials of construction should always be examined when considering a retrofit.

<u>Drop-in Performance.</u> There are three methods of converting a chiller to HFC-245ca: 1) replacement of refrigerant, 2) replacement of refrigerant, impellers and motor, and 3) replacement of refrigerant and the entire compressor, with oil replacement to polyolester assumed for all three options. Modification of the refrigerant metering system may also be required with any conversion. All three methods of conversion are addressed below.

The largest concern with an HFC-245ca drop-in retrofit is the inability to achieve required lift. The surge limits for each refrigerant with 25/25/24.5 impellers were plotted in Figure 6 and selected data for 90 degree vane settings are shown in Table 7.

CFC-11	99.7 F	37.6 C
HCFC-123	104.2 F	40.1 C
H FC-245ca	90.1 F	32.3 C

Table 7. Condenser Entering Water Temperature at the Onset of Surge for 90 degree Vane Setting

⁶ Doerr, R.G. and Waite, T.D. "**Compatibility of Refrigerants and Lubricants with Motor Materials under Retrofit Conditions**", International CFC and Halon Alternatives Conference, Washington D.C. October 24, 1995.

⁷ Doerr, R.G. and Waite, T.D. "**Compatibility of Refrigerants and Lubricants with Motor Materials under Retrofit Conditions**", **Final Report DOE/CE23810-63**. Air Conditioning and Refrigeration Technology Institute (ARTI) Database, September, 1995.

The ability of the impeller set to provide adequate lift is a strong function of the isentropic work requirement for each refrigerant. HFC-245ca has significantly higher isentropic work than CFC-11 which is higher than HCFC-123. As the data in Table 7 show, the lift reduction in a drop-in situation would be about 10 F when substituting HFC-245ca for CFC-11, and about 14 F when substituting HFC-245ca for HCFC-123. Although chiller installations are designed with some margin to account for tube fouling, low water flow rates and extreme operating conditions, typical installations do not have enough margin to handle increases in lift as large as 10 to 14 F. This conclusion is supported by our experience with CFC-12 to HFC-134a conversions in air cooled centrifugal chillers. Some customers thought they could tolerate some reduction in lift capability with HFC-134a, but were disappointed. We now offer only compressor rebuilds which use larger diameter impellers and return the chiller to its original performance levels. Thus, we conclude that drop-in conversions of low pressure chillers to use HFC-245ca are not commercially viable.

<u>Impeller Replacement.</u> Oversized impellers will produce greater lift and lower performance than properly sized impellers. Therefore, for many sales orders, full size impellers are cut back in diameter to exactly match the customer's lift requirements. In those cases where the compressor casing is large enough to accommodate HFC-245ca impellers, conversion to HFC-245ca with impeller replacement to retain original lift will be possible. Capacity and power increases can be expected, so motor capability will have to be examined. Table 8 and Figures 13 through 15 show measured chiller performance with diameters sized for proper lift capability.

	Impeller Diameters Inches	Condenser Entering Water Temp, (F)	Tons	kW	kW/Ton
CFC-11	25/25/24.5	90	177.4	149.8	.84
HCFC-123	24/24/24	90	179.0	146.3	.82
HFC-245ca	26/26/26	90	186.0	155.1	.83
CFC-11	25/25/24.5	80	184.5	145.7	.79
HCFC-123	24/24/24	80	203.4	154.2	.76
HFC-245ca	26/26/26	80	220.2	168.4	.76
CFC-11	25/25/24.5	70	220.2	160.7	.73
HCFC-123	24/24/24	70	205.5	150.6	.73
HFC-245ca	26/26/26	70	245.2	176.5	.72

Table 8. Chiller Full Load Performance - Properly Sized Impellers

How many existing chillers have the space for large impellers? Trane has been building a database of shipped chillers for the past 12 years. We will assume these data to be typical of the spectrum of chillers in service today (130 to 1550 tons) and then estimate the potential for retrofitting them with HFC-245ca. Analysis of the database given in Table 9 shows the percentage of chillers which could be retrofitted with large enough impellers to maintain the original lift.

For example, the data show that 67% of the chillers in the 130 to 300 ton size range with CFC-11 had, at the time of shipment, compressor casings large enough to accommodate the installation of larger diameter impellers suitable for use with HFC-

245ca. The remainder of the 130 to 300 ton CFC-11 chillers had compressor casings without enough room to accommodate the installation of impellers suitable for HFC-245ca. In summary, approximately two-thirds of the chillers under 600 tons can accommodate HFC-245ca impellers, while less than one-fourth of the chillers over 600 tons can accommodate HFC-245ca impellers.

Tons	130-300	301-600	601-900	901-1200	1200+
CFC-11	67%	63%	41%	22%	21
HCFC-123	73%	68%	15%	1%	0%

Table 9. Chiller	Population	Suitable for	HFC-245ca	Impellers
------------------	------------	--------------	-----------	-----------

The cost of converting low pressure chillers to either HCFC-123 or HFC-245ca has been estimated and is shown in Table 10. The CFC-11 to HCFC-123 conversion cost is included for comparison purposes to show the effect of the refrigerant properties. (Conversion from CFC-11 to HCFC-123 requires complete tear down, replacement of the motor and all gaskets and O-rings. Conversion from CFC-11 to HFC-245ca may or may not require a replacement motor. If a replacement motor is not required, tear down to replace impellers is all that is needed.)

Task	CFC-11 to HCFC-123	CFC-11 to HFC-245ca
Motor Replacement	\$25,000 - \$30,000	\$25,000 - \$30,000*
Cut back impellers	\$700/impeller	Not Applicable
New Impellers	Not Applicable	\$7000/impeller
Gaskets, O-rings	\$2000	\$1500
Oil	\$100	\$560
Flow Metering System	\$1000	\$1000
Labor	120-200 hours	100-120 hours

 Table 10. Estimated Cost of Impeller Replacement

* For CFC-11 to HCFC-123 conversion motor replacement is required because of material compatibility issues. For CFC-11 to HFC-245ca conversions, motor and starter replacement will often be necessary because of increased power consumption.

The cost of the retrofit will not be covered by lower cost operation, but must be weighed against the cost of buying a more efficient chiller (see Table 11). Most CFC-11 to HCFC-123 conversions are done to remove CFC-11 and not to save energy. Conversions from either CFC-11 or HCFC-123 to HFC-245ca will likely be done for the same reason.

How large is the existing market for conversions? Trane has performed more than 800 conversions from CFC-11 to HCFC-123 in the first eight months of 1995 at an average cost to the customer of \$60,000 for a 500 ton chiller. This figure includes motor replacement for every chiller due to material compatibility requirements but does not include the cost of refrigerant or a new purge. This cost includes many conversions where the starter was replaced and the control system was upgraded to add demand limit, better diagnostics and access to a building automation system. The converted chillers were mostly 7 to 15 years old but a few were as old as 30 years. In most cases the existing impellers were cut back and reinstalled; and new impellers were installed in

the remainder. Table 11 below shows chiller efficiency by year of manufacture over recent years.

Year	Typical	Typical	Best	Best
	Efficiency	Efficiency	Efficiency	Efficiency
	kW/Ton	COP	kW/Ton	COP
1975	.90	3.91	.80	4.39
1980	.75	4.69	.70	5.02
1990	.70	5.02	.65	5.41
1991	.68	5.17	.63	5.58
1992	.65	5.41	.60	5.86
1993	.63	5.58	.55	6.39
1994	.62	5.67	.52	6.76
1995	.60	5.86	.50	7.03

Most chillers shipped prior to 1991 were CFC-11 (a few were CFC-113), all chillers shipped after 1993 were HCFC-123 and from 1991 through 1993 they were mixed CFC-11 and HCFC-123. New chiller installations far outstrip the pace of chiller conversions due to the favorable economics from installing a higher efficiency chiller. Conversions from HCFC-123 to HFC-245ca will rarely if ever be performed because these chillers do not contain CFCs, are very efficient by today's standards, many cannot be converted and, for those that can be converted, the cost is high. Conversions from CFC-11 to HFC-245ca would be more likely but again efficiency gains will be small, and no more than half of the chillers can be retrofit to retain original lift, and the cost is high. A large scale market for converting chillers to HFC-245ca is very unlikely.

<u>Compressor Replacement.</u> Compressor replacement conversions from CFC-11 to HCFC-123 are being performed today in small numbers, estimated at about 100 per year industry-wide. The primary reasons for compressor replacement today instead of buying a new chiller include the high cost of chiller replacing chillers embedded in buildings, and long delivery times for new chillers. For example, Trane performed one compressor replacement conversion from CFC-11 to HCFC-123 in a building where the chiller was located on the 20th floor. Replacement would have required opening the roof, lifting out the old chiller with a helicopter, lifting in the new chiller the same way and reconstructing the roof. Chiller replacement was estimated at \$750,000 while compressor replacement cost about \$100,000. The cost of compressor replacement is typically in the range of \$200 to \$225 per ton complete which represents 80 to 100% of the cost of a new chiller without installation. In about 75% of the conversions, energy efficiency is improved because the new compressor is more efficient than the old one and, in some cases, because a smaller compressor is installed.

Demand for compressor replacement for conversions to HFC-245ca is not expected to be any larger than HCFC-123 conversions today due to the high cost. In addition, the small market for compressor conversions will not be large enough to justify development of HFC-245ca specific compressor designs, but must wait for an HFC-245ca chiller design to emerge.

Impeller Speed Change. Although gear driven chillers are outside the scope of this project, a couple of comments are in order. Gear driven compressors offer the option of changing the rotational speed of the impeller by simply changing the gear ratio, thus providing more flexibility in a retrofit situation. However, the impact on compressor adiabatic efficiency and bearing reliability from increasing the rotational speed has not been examined in this project. To provide confidence in the performance and reliability of a gear change solution to the surge problem, an experimental investigation of this option should be conducted.

New Products

The chiller test results show that CFC-11, HCFC-123 and HFC-245ca have comparable performance in centrifugal compressors. Further, the heat transfer characteristics of HFC-245ca in the chiller are only slightly inferior to HCFC-123. Therefore, chillers can be designed using HFC-245ca with about the same material cost as those for HCFC-123. This conclusion is illustrated in Figure 25 where we have cross plotted heat exchanger surface area vs chiller efficiency for HCFC-123, HFC-240ca and HFC-134a. This figure shows that chillers designed for HFC-245ca should be a competitive in the marketplace, disregarding the flammability issue, as HCFC-123 and, HFC-134a chillers are today.

The major obstacle other than flammability is the commercial unavailability of HFC-245ca. Since no chemical manufacturer has announced plans to build an HFC-245ca production facility, the industry is years away from being able to obtain commercial quantities at any price. In addition, the processes for manufacturing HFC-245ca are expected to be much more expensive than those used to produce HCFC-123. The price for HFC-245ca is expected to be high, with estimates from \$6 to \$10 per lbm (\$13.20 to \$22.00 per kg) at product maturity. Refrigerant cost in excess of \$10/lbm will be prohibitive in the market place, as the refrigerant cost starts contributing more than 10% of the product cost.

CONCLUSIONS AND RECOMMENDATIONS

- HFC-245ca will not perform satisfactorily when substituted for CFC-11 or HCFC-123 in existing chillers with no hardware changes due to surge concerns. For HFC-245ca to perform satisfactorily in a retrofit situation, the compressor must be modified with larger impellers, will likely need a larger motor and drive system, and in many instances will require a new compressor casing. The high cost of replacing compressors and drive systems is justified only in special situations driven by financial considerations at the job site.
- Chillers designed specifically for use with HFC-245ca can provide performance comparable to HCFC-123 chillers with some increase in heat transfer surface cost. This design is not commercially viable today because HFC-245ca is not available in commercial quantities, and the market resistance to refrigerants with Class 2 flammability ratings discourages the development of processing plants to commercially produce HFC-245ca.
- Although the flammability of HFC-245ca may be reduced by blending HFC-245ca with various flame suppressant compounds, addition of these compounds will degrade chiller performance and present significant technical challenges in heat exchanger design.
- The industry should continue to investigate cost effective methods for using high performance marginally flammable refrigerants such as HFC-245ca.

COMPLIANCE WITH AGREEMENT

The results documented in this report do not deviate from the contracted scope of work.

PRINCIPAL INVESTIGATOR EFFORT

Ed Keuper as principal investigator for this project has spent half of his time on this project from the contractual start date through 15 December 1995.

Figure 1

Three Stage Cycle with Economizers

Figure 2

Fig. 3 Chiller Capacity Oil Comparison CFC-11, Full Load, 26/26/26 Impellers

Fig. 3a Chiller Capacity Oil Comparison CFC-11, Full Load, 660/660/660 Impellers

Condenser Entering Water Temperature - C

.

Fig. 4 Chiller Power Consumption Oil Comparison CFC-11, Full Load, 26/26/26 Impellers

Condenser Entering Water Temperature - F

Fig. 4a Chiller Power Consumption Oil Comparison

Condenser Entering Water Temperature - C

Fig. 5 Chiller Efficiency Oil Comparison CFC-11, Full Load, 26/26/26 Impellers

Condenser Entering Water Temperature - C

Fig. 6 Condenser Entering Water Temperature at Surge vs. Vanes 25/25/24.5 Impellers

Fig. 7 Capacity vs. Condenser Entering Water Temperature

Fig. 7a Capacity vs Condenser Entering Water Temperature 660/660/660 Impellers - 90° Vanes

Condenser Entering Water Temperature - C

Fig. 8 Power vs. Condenser Entering Water Temperature

Condenser Entering Water Temperature - F

Fig. 8a Power vs. Condenser Entering Water Temperature 660/660/660 Impellers - 90° Vanes

Condenser Entering Water Temperature - C

Condenser Entering Water Temperature - F

Fig. 9a Efficiency vs. Condenser Entering Water Temperature 660/660/660 Impellers - 90° Vanes

Fig. 10 Capacity vs. Condenser Entering Water Temperature 25/25/24.5 Impellers - 90° Vanes

Condenser Entering Water Temperature - F

Fig. 10a Capacity vs. Condenser Entering Water Temperature 635/635/622 Impellers - 90° Vanes

Condenser Entering Water Temperature - C

Fig. 11 Power vs. Condenser Entering Water Temperature 25/25/24.5 Impellers - 90° Vanes

Condenser Entering Water Temperature - F

Fig. 12 KW/Ton vs. Condenser Entering Water Temperature 25/25/24.5 Impellers - 90° Vanes

Fig. 12a Efficiency vs. Condenser Entering Water Temperature 635/635/622 Impellers - 90° Vanes

Condenser Entering Water Temperature - C

Fig. 13 Capacity vs. Condenser Entering Water Temperature Optimum Diameter Impellers - 90° Vanes

Fig. 13a Capacity vs. Condenser Entering Water Temperature Optimum Diameter Impellers - 90° Vanes

Condenser Entering Water Temperature - C

Fig. 14 Power vs. Condenser Entering Water Temperature Optimum Diameter Impellers - 90° Vanes

Condenser Entering Water Temperature - F

Fig. 14a Power vs. Condenser Entering Water Temperature Optimum Diameter Impellers - 90° Vanes

Condenser Entering Water Temperature - C

Fig. 15 KW/Ton vs. Condenser Entering Water Temperature Optimum Diameter Impellers - 90° Vanes

Condenser Entering Water Temperature - F

Fig. 15a Efficiency vs. Condenser Entering Water Temperature Optimum Diameter Impellers - 90° Vanes

Condenser Entering Water Temperature - C

Fig. 16 Power vs. Capacity for CFC-11 Conversion with and without Impeller Replacement

Capacity - Tons

Fig. 16a Power vs. Capacity for CFC-11 Conversion With and Without Impeller Replacement

Capacity - kW

Fig. 17 Compressor Efficiency Comparison 26/26/26 Inch Impellers

Suction Volume Rate - Ft3/rev

Suction Volume Rate - M3/rev

Fig. 18 Compressor Efficiency Comparison 25/25/24.5 inch Impellers

Fig. 18a Compressor Efficiency Comparison 635/635/622 mm Impellers

Suction Volume Rate - M3/rev

Fig. 19 Condenser Refrigerant Side Heat Transfer Coefficient vs Heat Flux 1" 35 FPI Tubes, Ester Oil, Nominal Area Basis

CFC-11 Hornor June 1 1000 1000 1000 Hent Flux - Btu/hr f2

Heat Flux - Btu/hr ft2

Fig. 19a Condenser Refrigerant Side Heat Transfer Coefficient vs Heat Flux 1" 35 FPI Tubes, Ester Oil, Nominal Area Basis

CFC-11

Heat Flux - kW/m2

Fig. 20 Evaporator Refrigerant Side Heat Transfer Coefficient vs Heat Flux 1" Turbo Bll Tubes, Ester Oil, Nominal Area Basis ^{CFC-11}

HFC-245ca

Heat Flux - Btu/hr ft2

Fig. 20a Evaporator Refrigerant Side Heat Transfer Coefficient vs Heat Flux 1" Turbo BII Tubes, Ester Oil, Nominal Area Basis

CFC-11

Heat Flux - kW/m2

Fig. 21 Pool Boiling Coefficient vs. Heat Flux 1" 35 fins/inch

Fig. 22 Condensation Coefficient vs. Heat Flux 1" 35 fins/inch

Fig. 23 Pool Boiling Coefficient vs. Heat Flux 1" Turbo-Bll

Fig. 24 Condensation Coefficient vs. Heat Flux 3/4" Turbo-CII

Fig. 25 Heat Transfer Area vs. Efficiency

KW/Ton

Fig. 25a Heat Transfer Area vs. Efficiency

Efficiency - COP

APPENDIX A DESCRIPTION OF SURGE

Surge of refrigerant gas in a centrifugal compressor results in sporadic backflow of refrigerant through the compressor. Surge occurs when the pressure on the condenser side exceeds the discharge pressure from the compressor. Conditions that contribute to surge include high condenser temperatures, overly restrictive guide vane settings, low evaporator temperatures and low impeller tip speeds. Refrigerants such as R-245ca with higher head requirements are more susceptible to surge.

The onset of surge is shown in Figure A-1 as a function of head coefficient and suction flow rate. This plot is based on the first law of thermodynamics expressed as enthalpy rise across the compressor is proportional to the square of the discharge gas velocity. The discharge velocity can be approximated by the impeller tip speed. For an isentropic compression process, the enthalpy rise is also proportional to the pressure rise divided by the refrigerant density. Head coefficient is simply the enthalpy rise divided by the square of the tip speed. As shown in Figure A-1, the ability of the compressor to deliver higher and higher heads as the flow rate is reduced is restricted by the surge limit. Attempts to raise the system pressure above the surge limit results in sporadic backflow of refrigerant through the compressor with reduced compressor efficiency and increased noise. If surge occurs, either the impeller tip speed must be increased or the system head pressure must be reduced.

Figure A-1 Surge Limits

APPENDIX B SUMMARIES OF FULL LOAD CHILLER TEST RESULTS

Imperial Units	Page Number
Large Diameter Impellers	65
Medium Diameter Impellers	69
Small Diameter Impellers	73
Metric Units	
Large Diameter Impellers	79
Medium Diameter Impellers	83
Small Diameter Impellers	87

LTO 23127 Note: Impeller diameters are 26.0/26.0/26.0			Full Lord Performance Comparison at 44/85					
1	Run Number		20	. 42	64	93	nae i	
			1					
F	Refrigerant	1	11	11	123	245ca	0	
0			Trane 22	Solest 68	Solest 68	Solest 68		
1	st Stage Guide Vane Setting	Degrees	90	90	90	90 1		
0	Capacity	Tons	238.60	231.60	226.40	206.20		
IF	Towor	KW	198.00	192.96	199.32	164.46		
IF	(W/Ton	KW/Ton	0.830	0.830	0.880	0.800	00000	
E	Evaporator Leaving Water Temperature	Deg F	44.00	44.00	44.04	43.99		
. 0	Condenser Entering Water Temperature	Deg F	84.98	84.97	85.21	84.97		
E	Energy Balance	%	-0.73	-0.65	-0.90	-0.92		
E	Evaporator Entering Water Temperature	Deg F	55.86	55.55	55.16	53.83		
E	Evaporator Leaving Water Temperature	Deg F	44.00	44.00	44.04	43.99		
E	Evaporator Water Flow Rate	GPM	481.90	480.10	487.50	501.90		
C	Condenser Entering Water Temperature	Deg F	84.98	84.97	85.21	84.97		
ic	Condenser Leaving Water Temperature	Deg F	96.91	96.46	96.52	95.09		
ic	Condenser Water Flow Rate	GPM	599.70	604.50	607.60	606.60		
E	Evap Sat Press	Psia	6.43	6.33	5.17	5.48		
	Sat Temp	Deg F	36.18	35.50	35.27	34.78		
	Approach	Deg F	7.80	8.50	8.80	9.20	A.C23	
	LMTD	Deg F	12.85	13.46	13.58	13.54		
	ITD/Delta T		1.66	1.74	1.79	1.94		
	Q/Ao	B/hr-ft2	17362.49	16853.44	16471.02	15001.09		
1	Uo	B/hr ft2 F	1351.11	1252.21	1212.93	1107.97		
	ho'	B/hr ft2 F	2435.97	2136.98	2012.02	1721.97	S - 55	
1		1						
ic	Cond Sat Press	Psia	26.14	25.94	23.49	24.48	1	
	Sat Temp	Deg F	106.21	105.77	106.68	103.61		
	Approach	Deg F	9.30	9.30	10.20	8.50	10000	
	Refrigerant Leaving Temp	Deg F	104.93	104.63	105.34	101.46		
	LMTD	Deg F	14.45	14.29	15.12	12.93	-	
	Q/Ao	B/hr-ft2	17268.02	16764.58	16593.67	14832.95		
	Uo	B/hr ft2 F	1194.72	1172.88	1097.73	1147.49		
	ho'	B/hr ft2 F	1803.27	1749.51	1584.05	1693.44		
							-	
ic	Cond Sat Temp	Deg F	106.21	105.77	106.68	103.61		
E	vap Sat Temp	Deg F	36.18	35.50	35.27	34.78	1.18	
E	stimated Motor Efficiency (1)	1	0.928	0.929	0.928	0.935		
E	stimated Motor RPM (1)		3537	3539	3537	3550		
C	Compressor Suction CFM (2)	CFM	3733	3675	4200	3545		
	isentropic KW/T (2)		0.564	0.566	0.580	0.554	100	
	Adiabatic Efficiency (3)		0.680	0.682	0.659	0.693		
	Q/N (4)		1.055	1.038	1.188	0.999		
				- 1				
1) From m	notor curves at measured power input							
2) Cycle c	alculation using evap and cond sat, motor efficiency	1.						
and eq	ual head split							
3) Ratio of	f isentropic and test KW/T							
4) CFM fre	om cycle calculation / estimated motor RPM							
5) Heat tra	ansfer coefficient calculations use bulk fluid properti	86						

.

	Evap Water Velocity	Fps	9.37	9.34	9.48	9.76	
	Be	1	48323.89	48034.55	48608.46	49538.19	i
	Pr	1	9.28	9.31	9.34	9.45	
	8	1	10.79	10.78	10.79	10.81	
	F	1	-5.22	-5.22	-5.22	-5.23	
 			3504.05	3493.23	3527.41	3588.96	
<u>├</u>	······································				l		
<u> </u>	Cond Water Volocity	Ene	0 33	9.41	9.46	944	·
			82689 57	83184 53	83776 36	82835 16	
	D-	1 .	5.06	5.07	5.06	5.11	
<u> </u>	B		11.32	11 33	11.34	11.32	
	E		-5.37	-5 39	-5 38	-5.37	
<u> </u>	Г L:		4099.00	A110.18	A120 78	4111.03	
	ni		4000.00	4110.10	4128.70	4111.003	
				[
			8 805 01	8 205 01	8 80E 01	8 805.01	
}			1.405-02	1 405.02	1 405-02	1 495-02	
	A2		1.495-00	1.495-03	1.495-00	1.492-05	
	A3		-1.092-00	-1.04E-00	-1.092-00	-1.09E-05	
	A4		2.91E-08	2.91E-08	2.915-06	2.91E-06	
	A5		-2.5/E-11	-2.5/E-11	-2.5/E-11	-2.5/E-11	
	KW (input)		198.00	192.96	199.32	164.46	
	Hp (estimated assuming eff of .933)		246.63	240.35	248.28	204.85	
	Motor efficiency		0.928	0.929	0.928	0.935	
	Curve fit for motor RPM						
	A1	<u> </u>	3.60E+03	3.60E+03	3.60E+03	3.60E+03	
	A2		-2.30E-01	-2.30E-01	-2.30E-01	-2.30E-01	
	A3		8.10E-05	8.10E-05	8.10E-05	8.10E-05	
	A4		-9.47E-07	-9.47E-07	-9.47E-07	-9.47E-07	
	A5		8.88E-10	8.88E-10	8.88E-10	8.88E-10	
	Motor RPM		3537.241	3539.175	3536.731	3549.678	
	::		-				
			· · · · · · · · · · · · · · · · · · ·				
	·						
	· · · · · · · · · · · · · · · · · · ·	ļ					
		ļ					
L							
		[

.

ID Description	Units	1	1		l	i
1 EVAP WATER FLOWMETER DELTA P	PSID	16.11	15.99	16.49	17.48	:
3 ENT EVAP WATER TEMP LOC 1	Deg F	55.85	55.53	55.14	53.80	
4 ENT EVAP WATER TEMP LOC 2	Deg F	55.88	55.57	55.18	53.85	1
5 LVG EVAP WATER TEMP LOC 1	Deg F	44.01	44.00	44.05	44.00	
6 LVG EVAP WATER TEMP LOC 2	Deg F	44.00	43.99	44.03	43.98	1
15 COND WATER FLOWMETER DELTA P	PSID	24.83	25.23	25.49	25.41	1
17 ENT COND WATER TEMP LOC 1	Deg F	84.98	84.97	85.23	84.98	
18 ENT COND WATER TEMP LOC 2	Deg F	84.97	84.96	85.18	84.95	1
19 LVG COND WATER TEMP LOC 1	Deg F	96.91	96.46	96.53	95.11	i
20 LVG COND WATER TEMP LOC 2	Deg F	96.90	96.45	96.51	95.08	
50 ABOVE EVAP DISTRIB TEMP - SUPPLY	Deg F	39.34	39.81	40.63	37.65	
51 ABOVE EVAP DISTRIB TEMP - MIDDLE	Deg F	38.24	36.59	38.02	37.24	
52 ABOVE EVAP DISTRIB TEMP - RETURN	Deg F	38.33	38.84	38.50	38.89	
61 EVAP SHELL STATIC PRESS - AVERAGE	PSIA	6.43	6.33	5.17	5.48	
215 ENT 2nd IMPELLER TOTAL PRESS #1	PSIA	10.80	10.68	8.91	9.35	
216 ENT 2nd IMPELLER TOTAL PRESS #2	PSIA	10.85	10.72	8.97	9.41	
218 ENT 2nd IMP SHROUD STATIC PRESS #1	PSIA	10.09	9.99	8.10	8.88	
315 ENT 3rd IMPELLER TOTAL PRESS #1	PSIA	18.40	17.90	15.43	26.38	
316 ENT 3rd IMPELLER TOTAL PRESS #2	PSIA	17.45	17.28	14.62	15.35	
318 ENT 3rd IMP SHROUD STATIC PRESS #1	PSIA	16.27	16.11	13.65	14.59	
431 COND SHELL STATIC PRESS - AVERAGE	PSIA	26.14	25.94	23.49	24.48	
440 REFRIGERANT LVG COND TEMP	Deg F	104.93	104.63	105.34	101.46	
484 HIGH PRESS ECONOMIZER STATIC PRESS	PSIA	16.98	16.82	14.60	15.38	
485 HIGH PRESS ECONOMIZER TEMP	Deg F	81.81	81.29	81.51	79.55	
486 LOW PRESS ECONONOMIZER STATIC PRESS	PSIA	10.78	10.67	9.06	9.51	
487 LOW PRESS ECONOMIZER TEMP	Deg F	59.20	58.57	58.99	57.75	
530 ENT EVAP ORIFICE ASS'Y PRESS	PSIA	10.85	10.72	9.39	9.60	
531 ENT EVAP ORIFICE ASS'Y TEMP	Deg F	59.27	58.63	59.36	57.77	
532 LVG EVAP ORIFICE ASS'Y PRESS	PSIA	8.89	8.74	7.69	7.65	
533 LVG EVAP ORIFICE ASS'Y TEMP	Deg F	50.58	49.34	52.37	48.38	
534 ENT COND ORIFICE ASS'Y PRESS	PSIA	25.92	25.65	23.29	24.18	
535 ENT COND ORIFICE ASS'Y TEMP	Deg F	104.97	104.50	105.43	101.84	
536 LVG COND ORIFICE ASS'Y PRESS	PSIA	19.70	19.41	18.09	18.14	
537 LVG COND ORIFICE ASS'Y TEMP	Deg F	90.75	90.14	92.79	88.40	
560 ATMOSPHERIC PRESS	PSIA	14.30	14.46	14.40	14.34	
580 MOTOR VOLTAGE - AB	Volts	3.864	3.861	3.887	3.900	
581 MOTOR VOLTAGE - AC	Volts	3.888	3.883	3.902	3.902	
582 MOTOR VOLTAGE - CB	Volts	3.865	3.866	3.886	3.884	
583 MOTOR CURRENT - A	Volts	2.686	2.612	2.707	2.277	
584 MOTOR CURRENT - B	Volts	2.810	2.743	2.831	2.348	
585 MOTOR CURRENT - C	Volts	2.667	2.616	2.650	2.190	
586 MOTOR POWER - PHASE 1	Volts	1.240	1.200	1.259	1.038	
587 MOTOR POWER - PHASE 3	Volts	2.060	2.016	2.063	1.703	
595 TC CARD #1 CHECK (LVG COND TEMP)	Deg F	96.93	96.49	96.20	95.11	
601 MAXIMUM MOTOR TEMPERATURE	Deg F	183.50	177.50	182.50	130.50	
605 1st STAGE VANE SETTING	Degrees	90.00	90.00	90.00	90.00	
607 3rd STAGE VANE SETTING	Degrees	68.00	68.00	68.00	68.00	
608 UNIT HOUR METER READING	Hr	350.10	390.50	403.40	419.60	
609 UNIT START COUNTER READING		96	109	112	115	
610 CURRENT REFRIGERANT CHARGE	Lbm	360	360	360	361	
	HOURS	359.92	1.39	0.00	0.00	
	%	-0.73	-0.65	-0.90	-0.92	
702 EVAP CAPACITY	Tons	238.60	231.60	226.40	206.20	

702 EVAR WATER ELOWRATE	GPM	481.90	480.10	487.50	501.90	!
	GPM	599.70	604.50	607.60	606.60	
710 AVE ENT EVAD WATER TEMP	Deg F	55.86	55.55	55.16	53.83	
	Deg F	44.00	44.00	44.04	43.99	
712 AVE ENT COND WATER TEMP	Deg F	84.98	84.97	85.21	84.97	1
	Dec F	96.91	96.46	96.52	95.09	
	Volte	463.70	463.30	466.40	468.00	
	Volte	466.60	466.00	468.20	468.20	
	Volte	463.80	463.00	466.20	466.10	•
	Amine	268.60	261.20	270 70	227 70	1
	Ampe	200.00	274 29	283.10	234.80	
	Amoe	265 70	261.60	265.00	219.00	
720 MOTOR CORRECT O	1KW	198.00	102.06	199.32	164.46	
	Volte	464 70	464.40	467.00	467.40	
	Amore	272.10	265 70	272.02	227 17	l
	KON/Top	0.83	200.70	0.99	0.80	;
	Deg E	11.86	11.55	11 12	0.80	
		11.00	11.55	11.12	10.12	
	Lber / rin	11.93	11.49	4067.60	10.13	
	Lom/min	4020.50	4005.50	4067.60	4188.00	
736 COND WATER FLOWHATE		4985.30	5025.30	5051.00	5043.20	
	Btu/min	47726.60	46327.30	45276.10	41235.50	
	Btu/min	59335.80	57605.90	57018.60	50968.50	
743 EVAP SAT'N TEMP (BASED ON ID #61)	Deg F	36.18	35.50	35.27	34.78	
744 COND SAT'N TEMP (BASED ON ID #431)	Deg F	106.21	105.77	106.68	103.61	
750 RUNNING TIME	Hr	21.20	61.60	74.50	90.70	
751 STARTS		3	14	17	20	
752 EVAP APPROACH TEMP	Deg F	7.80	8.50	8.80	9.20	
753 COND APPROACH TEMP	Deg F	9.30	9.30	10.20	8.50	
800 EVAP AVG H20 TEMP	Deg F	49.93	49.78	49.60	48.91	
801 EVAP WATER DENSITY	Lbm/Ft3	62.43	62.43	62.43	62.43	
802 EVAP H2O VISCOSITY(LBM/SEC-FT)	Lbm/Sec-I	0.000874	0.000876	0.000879	0.000888	
803 EVAP H2O SPECIFIC HEAT (Cp)	Btu/bm-F	1.0009	1.0009	1.0010	1.0010	
804 EVAP H2O CON(K) (BTU/HR-FT-F)		0.3392	0.3392	0.3391	0.3387	
810 COND AVG H2O TEMP	Deg F	90.94	90.72	90.87	90.03	
811 COND WATER DENSITY	Lbm/Ft3	62.12	62.12	62.12	62.13	
812 COND H2O VISCOSITY(LBM/SEC-FT)	Lbm/Sec-I	0.000506	0.000507	0.000506	0.000511	
813 COND H2O SPECIFIC HEAT (Cp)	Btu/Ibm-F	0.9977	0.9977	0.9977	0.9977	
814 COND H2O CON(K) (BTU/HR-FT-F)		0.3594	0.3592	0.3594	0.3590	
815 ITD/DELTA T		1.66	1.74	1.79	1.94	
850 RTD DIFFERENCE CHECK - ECWT	Deg F	0.01	0.01	0.05	0.03	
851 RTD DIFFERENCE CHECK - LCWT	Deg F	0.01	0.01	0.02	0.03	
852 RTD DIFFERENCE CHECK - EEWT	Deg F	-0.03	-0.04	-0.04	-0.05	
853 RTD DIFFERENCE CHECK - LEWT	Deg F	0.01	0.01	0.02	0.02	
870 TC/RTD CARD #1 CHECK (#19-#595)	Deg F	-0.02	-0.03	0.33	0.00	
	1	········				
	1					
	<u> </u>					
	<u> </u>					
	<u> </u>					
	· ·				1	
	<u> </u>					
LTO 23127 Note: Impeller diameters are 25.0/25.0/24.5	51	Full Load Pe	erformance C	omparison a	44/85	1
---	------------	------------------	--------------	-------------	-----------	--------
Run Number		121	154	185	204	-
			1			
	1		•	I	ARI	
Refrigerant		11	123	245ca	245ca	
Oil		Solest 68	Solest 68	Solest 68	Solest 68	
1st Stage Guide Vane Setting	Degrees	90	90	90	90	
Capacity	Tons	187.90	208.10	178.20	173.50	
Power	KW	151.62	173.04	136.38	134.10	
KW/Ton	KW/Ton	0.810	0.830	0.770	0.770	
TOE	Deg F	44.03	44.05	44.05	44.05	
TIC	Deg F	85.02	85.07	85.05	85.08	
Energy Balance	%	-1.38	-1.20	-1.29	-0.63	1
						i ,
TIE	Deg F	53.06	53.95	52.77	53.91	I
TOE	Deg F	44.03	44.05	44.05	44.05	
GPME	GPM	497.80	503.50	489.40	421.20	
TIC	Deg F	85.02	85.07	85.05	85.08	
TOC	Deg F	94.37	95.44	93.83	95.02	
GPMC	GPM	602.20	604.10	601.80	516.20	
Evap Sat Press	Psia	6.04	5.23	5.62	5.64	
Sat Temp	Deg F	33.50	35.73	35.79	35.93	
Approach	Deg F	10. 5 0 ·	8.30	8.30	8.10	
LMTD	Deg F	14.58	12.63	12.10	12.40	
ITD/Delta T		2.17	1.84	1.95	1.82	
Q/Ao	B/hr-ft2	13671.36	15139.84	12963.46	12620.48	
Uo	B/hr ft2 F	937.55	1198.74	1071.29	1017.48	
ho'	B/hr ft2 F	1346.84	1948.63	1652.17	1615.04	
Cond Sat Press	Psia	24.33	22.33	23.53	23.82	
Sat Temp	Deg F	102.08	103.90	101.52	102.16	
Approach	Deg F	7.70	8.50	7.70	7.10	
Refrigerant Leaving Temp	Deg F	100.77	103.01	99.31	100.25	
LMTD	Deg F	11.77	12.96	11.53	11.40	
Q/Ao	B/hr-ft2	13597.94	15121.44	12761.78	12379.09	
Uo	B/hr ft2 F	1155.05	1166.70	1107.02	1086.22	
hoʻ	B/hr ft2 F	1715.64	1737.21	1612.63	1655.25	
Cond Sat Temp	Deg F	102.08	103.90	101.52	102.16	
Evap Sat Temp	Deg F	33.50	35.73	35.79	35.93	
Estimated Motor Efficiency (1)		0.938	0.933	0.941	0.942	
Estimated Motor RPM (1)		3554	3547	3559	3560	
Compressor Suction CFM (2)	CFM	3097	3803	2981	2894	
Isentropic KW/T (2)		0.548	0.548	0.523	0.526	
Adiabatic Efficiency (3)		0.677	0.660	0.679	0.683	
Q/N (4)		0.871	1.072	0.838	0.813	
				·		
(1) From motor curves at measured power input						
(2) Cycle calculation using evap and cond sat, motor efficiency	γ					
and equal head split						
(3) Ratio of isentropic and test KW/T						
(4) CFM from cycle calculation / estimated motor RPM						
(5) Heat transfer coefficient calculations use bulk fluid propert	185	_				

Re 44955.10 4772.54 419.73 Pr 9.51 9.44 9.53 9.44 R 10.80 10.81 10.78 10.64 F -5.22 -5.27 3176.25 N 3563.40 3587.77 3519.27 3176.25 Cond Wash Velocity Fps 9.37 9.40 9.37 8.03 Re 1919.85 5281.71 1170.865 70450.23 Pr -5.14 5.06 5.15 5.11 R -11.31 11.32 11.31 11.16 F -6.37 -5.37 -5.33 Ni 4052.96 4103.29 4078.09 346.39 Curve fit for motor efficiency - - - - A1 4052.96 1.062-03 1.462-03 1.462-03 1.462-03 A3 -1.062-03 1.402-03 1.462-03 1.462-03 1.462-03 A1 1.462-03 1.462-03 1.462-03 1.462-03	Evap Water Velocity	iFps	9.68	9.79	9.52	8.19	
Pr 9.44 9.53 9.44 R 10.80 10.81 10.84 10.84 F 5.22 5.23 5.22 5.17 N 3863.40 3907.77 3519.27 3176.25 Ocnd Water Velocity Fps 9.37 9.40 9.37 8.03 Re 1918.85 8281.47.1 8170.85 70400.23 Pr .5.14 5.06 5.15 5.11 R .113.1 11.32 11.31 11.16 F .5.37 .5.37 .5.37 .5.33 N .4082.86 4103.29 4078.09 344.9.9 Curve fit for motor efficiency	Re		48859.11	49751.90	47927.54	41619.73	-
R 10.80 10.81 10.78 10.84 F 5.22 5.22 5.22 5.17 NI 3563.40 3597.77 3519.27 3176.25 Image: Second Seco	Pr		9.51	9.44	9.53	9.44	
F 5.22 5.23 5.22 5.17 hi 3589.40 3597.77 3519.27 3176.25 Cond Water Velocity Fps 9.40 9.37 8.03 Re 81918.85 8281.471 8170.825 75400.23 Pr 514 509 5.15 5.11 R 11.31 11.22 11.31 11.16 F -5.37 -5.37 -5.37 -5.37 hi 4062.86 40.20 0.849.30 Curve filt for motor efficiency 8.80E-01 8.80E-01 8.80E-01 A2 1.48E-03 1.48E-03 1.48E-03 1.48E-03 A3 -1.00E-05 1.00E-05 1.00E-05 1.00E-05 A4 2.201E-06 2.21E-06 2.21E-06 2.21E-06 A3 -2.37E-11 2.37E-11 2.37E-11 2.37E-11 FW (input) 1518.2 118.24 1198.38 134.10 Hg (estimated assuming eff of .933) 188.86 215.54 189.28 </td <td>• R</td> <td>1</td> <td>10.80</td> <td>10.81</td> <td>10.78</td> <td>10.64</td> <td>i</td>	• R	1	10.80	10.81	10.78	10.64	i
Ni 3563.40 3597.77 3519.27 3178.25 Cond Water Velocity Fps 9.37 9.40 9.37 8.03 Pe 1919.85 82814.71 8170.85 7040.23 Pr 5.14 5.09 5.15 5.11 R 11.131 11.122 11.31 11.16 F -5.37 5.37 5.37 5.33 Ni 4062.86 4103.29 4078.06 3649.30 Curve fit for motor efficiency - - - - A1 4062.86 4103.29 4078.06 3649.30 A2 1.48E-03 1.48E-03 1.48E-03 1.48E-03 A3	F		-5.22	-5.23	-5.22	-5.17	
Cond Water Velocity Fps 9.37 9.40 9.37 8.03 Re 81918.85 8281.471 81708.85 7040.23 Pr 514 5.09 5.15 5.11 R 1131 11.22 1131 11.16 F -5.37 -5.37 -5.37 -5.33 N - 4062.86 410.29 0.96 564.39 Curve fit for motor efficiency - - - - - - A1 .080E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01 A2 .1.48E-03 1.04E-03 1.0	hi		3563.40	3597.77	3519.27	3176.25	
Cond Water Velocity Fps 9.37 9.40 9.37 8.03 Re 81918.85 22814.71 81708.85 70400.23 Pr 5.14 5.09 5.15 5.11 R 1131 11.31 11.31 11.31 F -5.37 5.37 5.37 5.33 N 4082.86 4103.29 4078.09 3849.39 Curve fit for motor efficiency 8.00E-01 8.00E-01 8.00E-01 8.00E-01 A1 8.30E-01 8.00E-01 8.00E-01 8.00E-01 8.00E-01 A2 1.48E-03 1.49E-03 1.49E-03 1.49E-03 A3 -1.00E-05 1.00E-05 1.00E-05 1.00E-05 A4 2.91E-06 2.91E-06 2.91E-06 2.91E-06 A5 -2.47E-11 2.37E-11 2.37E-11 2.37E-11 KW (input) 15182 173.04 198.38 193.10 Hp destinatio assuming eff of .923) 188.86 2.30E-01 2.30E-01						· · · · · · · · · · · · · · · · · · ·	
Cond Water Velocity Fps 9:37 9:40 9:37 8:03 Re 81918.85 82814.71 81706.85 70490.23 Pr 5:14 5.00 5:15 5:11 R 11.31 11.32 11.31 11.32 11.31 11.16 F 5:37 5:37 5:33 5:33 5:33 5:33 Ni 4082.86 4103.29 4078.09 3649.39 Curve fit for motor efficiency A1 8:05E-01 8:05E-01 8:05E-01 8:05E-01 A2 1.49E-03 1.49E-03 1.49E-03 1.49E-03 A3 -109E-05 1.09E-05 1.09E-05 1.09E-05 A4 2.91E-00 2.91E-00 2.91E-00 2.91E-00 A4 2.91E-01 2.91E-01 2.97E-11 -2.57E-11			1				
Re 61918.65 82814.71 81708.85 70400.23 Pr 5.14 5.09 5.15 5.11 R 11.31 11.32 11.31 11.32 11.31 11.35 F -5.37 -5.37 -5.33 -5.33 -5.33 -5.33 hi -4082.86 4103.29 4078.09 3649.39 Curve fit for motor efficiency - - - - A1 - 8.00E-01 8.00E-01 8.00E-01 8.00E-01 A2 - 1.48E-03 1.48E-03 1.48E-03 1.48E-03 A3 - 0.00E-05 1.00E-05 1.00E-05 1.00E-05 A4 2.91E-06 2.91E-08 2.91E-08 2.91E-08 2.91E-04 A5 -2.57E-11 -2.57E-11 </td <td>Cond Water Velocity</td> <td>Fps</td> <td>9.37</td> <td>9.40</td> <td>9.37</td> <td>8.03</td> <td></td>	Cond Water Velocity	Fps	9.37	9.40	9.37	8.03	
Pr 5.14 5.09 5.15 5.11 R 11.31 11.32 11.31 11.32 11.31 11.32 F -5.37 -5.33 -5.37 -5.33 -5.33 -5.33 hi 4062.86 4103.29 4078.09 3849.39 Curve fit for motor efficiency	Re		81918.85	82814.71	81708.85	70490.23	
R 11.31 11.32 11.31 11.16 F -5.37 -5.37 -5.37 -5.33 hi 4082.86 4103.29 4078.09 3849.39 Curve fit for motor efficiency	Pr		5.14	5.09	5.15 ·	5.11	
F -5.37 -5.37 -5.37 -5.37 -5.33 hi 4082.86 4103.29 4078.09 3648.39 Curve fit for motor efficiency	R		11.31	11.32	11.31	11.16	
hi 4082.86 4103.29 4078.09 3649.39 Curve fit for motor efficiency -	F		-5.37	-5.37	-5.37	-5.33	
Curve fit for motor efficiency 8 80E-01 8.80E-01 8.80E-01 A1 8.80E-01 8.80E-01 8.80E-01 8.80E-01 A2 1.48E-03 1.48E-03 1.48E-03 1.48E-03 A3 1.00E-05 1.00E-05 1.09E-05 1.09E-05 A4 2.91E-08 2.91E-08 2.91E-08 2.91E-08 A5 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 KW (input) 151.52 173.04 135.38 194.10 Hp (estimated assuming eff of .933) 198.96 215.54 169.88 167.04 Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM	hi		4082.86	4103.29	4078.09	3649.39	
Curve fit for motor efficiency Sole-01 8.80E-01 8.80E-01 8.80E-01 8.80E-01 A1 6.80E-01 8.80E-01 8.80E-01 8.80E-01 8.80E-01 A2 1.49E-03 1.49E-03 1.49E-03 1.49E-03 1.49E-03 A3 -1.00E-05 -1.00E-05 -1.00E-05 2.91E-06 2.91E-06 A4 2.91E-08 2.91E-08 2.91E-08 2.91E-08 2.91E-08 A5 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 KW (input) 151.62 173.04 138.38 134.10 Mator efficiency 0.339 0.933 0.941 0.942 Curve fit for motor RPM		Î	-				
Curve fit for motor efficiency A1 8.80E-01 8.80E-10							
A1 8.80E-01 8.80E-01 8.80E-01 8.80E-01 A2 1.49E-03 1.49E-03 1.49E-03 1.49E-03 A3 -1.09E-05 -1.09E-05 -1.09E-05 -1.09E-05 A4 2.91E-08 2.91E-08 2.91E-08 2.91E-08 A5 -2.57E-11 2.57E-11 2.57E-11 2.57E-11 KW (input) 151.62 173.04 136.38 134.10 Hp (estimated assuming eff of .933) 188.06 215.54 169.88 167.04 Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM - - - - A1 3.60E-03 3.60E+03 3.60E+03 3.60E+03 A2 -2.30E-01 -2.30E-01 -2.30E-01 -2.30E-01 -2.30E-01 A3 8.10E-05 8.10E-05 8.10E-05 8.10E-05 8.10E-05 A4 -9.47E-07 -9.47E-07 -9.47E-07 -9.47E-07 -4.7E-07 -4.7E-07 -4.7E-07 -4.7E-07 -4.7E-07 -4.7E-07 -4.7E-07 -4.7E-07 -4.7E-07 -4.7E-0	Curve fit for motor efficiency						
A2 1.49E-03 1.49E-03 1.49E-03 1.49E-03 A3 -1.09E-05 -1.09E-05 -1.09E-05 1.09E-05 A4 2.91E-08 2.91E-08 2.91E-08 2.91E-08 A5 -2.57E-11 2.57E-11 2.57E-11 2.57E-11 KW (input) 151.62 173.04 198.38 134.10 Hp (estimated assuming eff of .933) 188.86 215.54 169.88 167.04 Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM	A1		8.80E-01	8.80E-01	8.80E-01	8.80E-01	
A3 -1.09E-05 -1.09E-05 -1.09E-05 2.91E-08 2.91E-01 2.35E-11 2.57E-11 2.57E-11 2.57E-11 0.938 0.933 0.941 0.942 0.938 0.933 0.941 0.942 0.942 0.938 0.931 0.942 0.942 0.942 0.938 0.931 0.942 0.947 0.947E-07 0.947E-07 <	A2		1.49E-03	1.49E-03	1.49E-03	1.49E-03	
A4 2.91E-08 2.91E-08 2.91E-08 2.91E-08 A5 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 KW (input) 1151.62 173.04 136.38 134.10 Hg (estimated assuming eff of .933) 188.86 215.54 169.88 157.04 Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM	A3		-1.09E-05	-1.09E-05	-1.09E-05	-1.09E-05	
A5 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 -2.57E-11 KW (input) 151.62 173.04 136.38 134.10 Hp (estimated assuming eff of .933) 188.86 215.54 169.88 167.04 Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM 3.60E+03 3.60E+03 3.60E+03 3.60E+03 A1 3.60E+03 3.60E+03 3.60E+03 3.60E+03 A2 -2.30E-01 -2.30E-01 -2.30E-01 -2.30E-01 A3 8.10E-05 8.10E-05 8.10E-05 8.10E-05 A4 -9.47E-07 -9.47E-07 -9.47E-07 A5 8.88E-10 8.88E-10 8.88E-10 Motor RPM 3554.178 3546.592 3550.102	A4		2.91E-08	2.91E-08	2.91E-08	2.91E-08	
KW (input) 151.62 173.04 136.38 134.10 Hp (estimated assuming eff of .933) 188.86 215.54 169.88 167.04 Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM	A5		-2.57E-11	-2.57E-11	-2.57E-11	-2.57E-11	
Hp (estimated assuming eff of .933) 188.86 215.54 169.88 167.04 Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM	KW (input)		151.62	173.04	136.38	134.10	
Motor efficiency 0.938 0.933 0.941 0.942 Curve fit for motor RPM 3.60E+03	Hp (estimated assuming eff of .933)		188.86	215.54	169.88	167.04	
Curve fit for motor RPM 3.60E+03 8.80E+10 3.60E+03 8.80E+10 3.60E+03 3.60E+03 3.60E+03 3.60E+03 3.60E+03 3.60E+03 8.80E+10 8.80E+	Motor efficiency		0.938	0.933	0.941	0.942	
Curve fit for motor RPM 3.60E+03 3.60E+03 3.60E+03 3.60E+03 3.60E+03 A1 -2.30E-01 -2.30E-01 -2.30E-01 -2.30E-01 -2.30E-01 A3 8.10E-05 8.10E-05 8.10E-05 8.10E-05 8.10E-05 A4 -9.47E-07 -9.47E-07 -9.47E-07 -9.47E-07 A5 8.88E-10 8.88E-10 8.88E-10 8.88E-10 Motor RPM 3554.178 3546.592 3559.345 3560.102			1				
A1 3.60E+03 3.60E+03 3.60E+03 3.60E+03 A2 -2.30E-01 -2.30E-01 -2.30E-01 -2.30E-01 A3 8.10E-05 8.10E-05 8.10E-05 8.10E-05 A4 -9.47E-07 -9.47E-07 -9.47E-07 A5 8.88E-10 8.88E-10 8.88E-10 Motor RPM 3554.178 3546.592 3559.345	Curve fit for motor RPM						
A2 -2.30E-01 -2.30E-01 -2.30E-01 -2.30E-01 A3 8.10E-05 8.10E-05 8.10E-05 8.10E-05 A4 -9.47E-07 -9.47E-07 -9.47E-07 A5 8.88E-10 8.88E-10 8.88E-10 Motor RPM 3554.178 3560.592 3550.345	A1		3.60E+03	3.60E+03	3.60E+03	3.60E+03	
A3 8.10E-05 8.10E-05 8.10E-05 8.10E-05 A4 -9.47E-07 -9.47E-07 -9.47E-07 A5 8.88E-10 8.88E-10 8.88E-10 Motor RPM 3554.178 3546.592 3559.345 3560.102	A2		-2.30E-01	-2.30E-01	-2.30E-01	-2.30E-01	
A4 -9.47E-07 -9.47E-07 -9.47E-07 -9.47E-07 A5 8.88E-10 8.88E-10 8.88E-10 8.88E-10 Motor RPM 3554.178 3546.592 3559.345 3560.102	A3		8.10E-05	8.10E-05	8.10E-05	8.10E-05	
A5 8.88E-10 8.88E-10 8.88E-10 Motor RPM 3554.178 3546.592 3559.345 3560.102 Image: State S	A4		-9.47E-07	-9.47E-07	-9.47E-07	-9.47E-07	
Motor RPM 3554.178 3546.592 3559.345 3560.102	A5	1	8.88E-10	8.88E-10	8.88E-10	8.88E-10	
	Motor RPM		3554,178	3546.592	3559.345	3560,102	
		 j					
Image: sector of the sector			1				
Image: Section of the section of th							
Image: state stat			- · · · · · · · · · · · · · · · · · · ·				
Image: Section of the section of th						•	
Image: Section of the section of th							
Image: Section of the section of th							
Image: Section of the section of th						1	
Image: Section of the section of th							
Image: Section of the section of th		1					
			1				
		·					
						Í	
		- <u></u>					{
			1				
			1				
			1				
	1						

LIEVAP WATER FLOWMETER DELTA P	PSID	17.20	17.59	16.62	12.31	
3 ENT EVAP WATER TEMP LOC 1	Deg F	53.09	53.97	52.79	53.93	
4 ENT EVAP WATER TEMP LOC 2	Deg F	53.04	53.93	52.74	53.88	·
SILVE EVAP WATER TEMP LOC 1	Deg F	44.04	44.07	44.07	44.06	
611 VG EVAP WATER TEMP LOC 2	Deg F	44.02	44.04	44.03	44.03	
	IPSID	25.04	25.20	25.01	18.40	
17 ENT COND WATER TEMP LOC 1	Deg F	85.01	85.04	85.03	85.07	**************************************
18 ENT COND WATER TEMP LOC 2	Deg F	85.02	85.10	85.06	85.09	:
1911 VG COND WATER TEMP LOC 1	Deg F	94.37	95.43	93.82	95.00	-
20 LVG COND WATER TEMP LOC 2	Deg F	94.37	95.45	93.84	95.03	1
50 ABOVE EVAP DISTRIB TEMP - SUPPLY	Deg F	38.99	37.73	38.25	41.78	· · · · · · · · · · · · · · · · · · ·
51 ABOVE EVAP DISTRIB TEMP - MIDDLE	Deg F	36.74	38.90	37.93	39.02	
52 ABOVE EVAP DISTRIB TEMP - RETURN	Deg F	36.99	39,99	38.09	40.34	
61 FVAP SHELL STATIC PRESS - AVERAGE	PSIA	6.04	5.23	5.62	5.64	!
215 ENT 2nd IMPELLER TOTAL PRESS #1	PSIA	10.09	8.85	943	9.50	1
216 ENT 2nd IMPELLER TOTAL PRESS #2	PSIA	10.14	893	9.50	9.56	
218 ENT 2nd IMP SHEOLID STATIC PRESS #1	PSIA	9.64	8.20	9.09	9.17	
315 ENT 3rd IMPELLER TOTAL PRESS #1	PSIA	15.76	14.05	13.74	13.91	
316 ENT 3rd IMPELLER TOTAL PRESS #2	PSIA	16.21	14.58	1549	15.65	
319 ENT 3rd IMP SUBOLID STATIC PRESS #1	PSIA	15.52	13.64	14.81	15.05	
	DSIA	24.33	22.33	23.53	23.82	
40 BEERIGERANT I VG COND TEMP	Dec E	100.77	103.01	00.21	100.25	
	DOLA	15.06	14 22	16.35	16.51	
404 HIGH PRESS ECONOMIZER STATIC FRESS	Dog E	79.40	90.44	79.05	70.65	
465 HIGH FRESS ECONOMIZER I EMF	DELA	10.05	9.02	79.05	79.00	
400 LOW PRESS ECONONOMIZER STATIC PRESS	PSIA Den E	10.00	0.92	8.53	9.59	
	Degr	35.80	38.40	37.72	37.90	
SULENT EVAP ORIFICE ASS T PRESS	DeelE	1.87	7.50	7.45	7.44	
531 ENT EVAP ORIFICE ASS'T TEMP	Deta	35.72	38.80	37.65	57.90	
532 LVG EVAP ORIFICE ASS T PRESS	DenE	10.06	9.06	9.55	9.59	
	Deyr	24.04	20.94	47.43	47.44	
534 ENT COND ORIFICE ASSY FRESS	Dec 5	24.29	22.50	23.52	23.79	
535 ENT COND ORIFICE ASS'T TEMP	Deyr	101.51	103.91	17.70	100.94	
535 LVG COND ORIFICE ASSY FRESS	DerE	18.37	17.17	17.73	17.84	
	Degr	60.31	90.77	80.48	00.00	
	POIA	14.38	14.50	14.39	14.3/	
STUNCTOR VOLTAGE - AB	VOIIS	3.850	3.880	3.922	3.901	
	Voits	3.858	3.884	3.931	3.908	
582 MOTOR VOLTAGE - CB	VOIDS	3.840	3.8/4	3.908	3.889	
	VOILS	2.115	2.383	1.899	1.8/3	
	Voltes	2.187	2.482	1.9/1	1.938	
	Volts	2.067	2.294	1.854	1.833	[
580 MOTOR POWER - PHASE 1	VOIDS	0.941	1.108	0.824	0.808	
587 MUTOR POWER - PHASE 3	VOITS	1.555	1.//6	1.449	1.42/	
	Deg F	94.38	95.38	93.75	94.97	
	Degr	130.50	150.2	111.50	110.00	
605/1ST STAGE VANE SETTING	Degrees	90.00	90	90.00	90.00	
OUT STO STAGE VANE SETTING	Degrees	68.00	68	68.00	68.00	
		453.40	470.2	487.50	500.50	
CUE UNIT START COUNTER READING		124	128	131	133	
TOUCUMENT HEFHIGEHANT CHARGE		360	360	360	360	l
	HOURS	0.00	1.3509	1.18	0.00	
	% .	-1.38	-1.2	-1.29	-0.63	
	(Ons	187.90	208.1	178.20	173.50	
703 EVAP WATER FLOWRATE	GPM	497,80	503.5	489.40	421.20	
7041COND WATER FLOWRATE	GPM	602.20	604.1	601.80	516.20	

710 AVE ENT EVAP WATER TEMP	Deg F	53.06	53.95	52.77	53.91
711 AVE LVG EVAP WATER TEMP	Deg F	44.03	44.05	44.05	44.05
712 AVE ENT COND WATER TEMP	IDeg F	85.02	85.07	85.05	85.08
713 AVE LVG COND WATER TEMP	Deg F	94.37	95.44	93.83	95.02
715 MOTOR VOLTAGE - AB	Volts	462.00	465.6	470.60	468.10
716 MOTOR VOLTAGE - AC	Volts	463.00	466.1	471.70	469.00
717 MOTOR VOLTAGE - CB	Volts	460.80	464.9	469.00	466.70
718 MOTOR CURRENT - A	Amps	211.50	238.3	189.90	187.30
719 MOTOR CURRENT - B	Amps	218.70	248.2	197.10	193.80
720 MOTOR CURRENT - C	Amps	206.70	229.4	185.40	183.30
721 UNIT POWER	KW	151.62	173.04	136.38	134.10
722 AVERAGE VOLTAGE	Volts	461.90	465.5	470.40	467.90
723 AVERAGE CURRENT	Amps	212.30	238.63	190.80	188.13
725 KW/TON	KW/Ton	0.81	0.83	0.77	0.77
730 EVAP DELTA T	Deg F	9.03	9.89	8.72	9.85
731 COND DELTA T	Deg F	9.35	10.37	8.79	9.93
735 EVAP WATER FLOWRATE	Lbm/min	4154.40	4201.2	4083.80	3514.50
736 COND WATER FLOWRATE	Lbm/min	5006.30	5022.3	5003.30	4291.50
740 EVAP CAPACITY	Btu/min	37580.30	41616.9	35634.40	34691.60
741 COND CAPACITY	Btu/min	46724.80	51959.8	43851.60	42536.60
743 EVAP SAT'N TEMP (BASED ON ID #61)	Deg F	33.50	35.73	35.79	35.93
744 COND SAT'N TEMP (BASED ON ID #431)	Deg F	102.08	103.9	101.52	102.16
750 RUNNING TIME	Hr	124.50	141.3	158.60	171.60
751 STARTS		29	33	36	38
752 EVAP APPROACH TEMP	Deg F	10.50	8.3	8.30	8.10
753 COND APPROACH TEMP	Deg F	7.70	8.5	7.70	7.10
800 EVAP AVG H20 TEMP	Deg F	48.55	49	48.41	48.98
801 EVAP WATER DENSITY	Lbm/Ft3	62.43	62.4311	62.43	62.43
802 EVAP H2O VISCOSITY(LBM/SEC-FT)	Lbm/Sec-I	0.000893	0.000887	0.000895	0.000887
803 EVAP H2O SPECIFIC HEAT (Cp)	Btu/lom-F	1.0012	1.0010	1.0012	1.0010
804 EVAP H2O CON(K) (BTU/HR-FT-F)		0.3385	0.3387	0.3384	0.3387
810 COND AVG H20 TEMP	Deg F	89.69	90.25	89.44	90.05
811 COND WATER DENSITY	Lbm/Ft3	62.14	62.13	62.14	62.13
812 COND H2O VISCOSITY(LBM/SEC-FT)	Lbm/Sec-I	0.000513	0.000509	0.000514	0.000511
813 COND H2O SPECIFIC HEAT (Cp)	Btu/bm-F	0.9977	0.9977	0.9977	0.9977
814 COND H2O CON(K) (BTU/HR-FT-F)		0.3588	0.3591	0.3587	0.3590
815 ITD/DELTA T		- 2.17	1.84	1.95	1.82
850 RTD DIFFERENCE CHECK - ECWT	Deg F	-0.01	-0.06	-0.03	-0.02
851 RTD DIFFERENCE CHECK - LCWT	Deg F	0.00	-0.02	-0.02	-0.03
852 RTD DIFFERENCE CHECK - EEWT	Deg F	0.05	0.04	0.05	0.05
853 RTD DIFFERENCE CHECK - LEWT				the second s	
	Deg F	0.02	0.03	0.04	0.03

÷

13

			والمحجورة فالمتحص		
1 EVAP WATER FLOWMETER DELTA P	PSID	16.77	16.79	14.45	
3 ENT EVAP WATER TEMP LOC 1	Deg F	47.17	46.97	54.09	
4 ENT EVAP WATER TEMP LOC 2	Deg F	47.10	46.87	54.03	· · · · · · · · · · · · · · · · · · ·
5 LVG EVAP WATER TEMP LOC 1	Deg F	44.04	44.03	44.04	1
6 LVG EVAP WATER TEMP LOC 2	Deg F	44.00	43.98	44.00	· · · · · · · · · · · · · · · · · · ·
15 COND WATER FLOWMETER DELTA P	PSID	25.45	25.43	22.15	
17 ENT COND WATER TEMP LOC 1	Deg F	90.03	93.00	85.03	
18 ENT COND WATER TEMP LOC 2	Deg F	90.06	93.02	85.04	
19 LVG COND WATER TEMP LOC 1	Deg F	93.40	96.20	95.11	1
20 LVG COND WATER TEMP LOC 2	Deg F	93.43	96.20	95.11	
50 ABOVE EVAP DISTRIB TEMP - SUPPLY	Deg F	42.59	42.75	38.38	
51 ABOVE EVAP DISTRIB TEMP - MIDDLE	Deg F	42.93	43.13	39.00	
52 ABOVE EVAP DISTRIB TEMP - RETURN	Deg F	43.87	44.10	40.07	· ·
61 EVAP SHELL STATIC PRESS - AVERAGE	PSIA	5.90	5.92	5.30	
215 ENT 2nd IMPELLER TOTAL PRESS #1	PSIA	7.55	7.89	8.75	1
216 ENT 2nd IMPELLER TOTAL PRESS #2	PSIA	7.71	8.05	8.81	
218 ENT 2nd IMP SHROUD STATIC PRESS #1	PSIA	7.47	7.82	8.21	
315 ENT 3rd IMPELLER TOTAL PRESS #1	PSIA	10.55	11.25	12.78	
316 ENT 3rd IMPELLER TOTAL PRESS #2	PSIA	11.71	12.49	14.12	
318 ENT 3rd IMP SHROUD STATIC PRESS #1	PSIA	12.24	12.97	13.23	
431 COND SHELL STATIC PRESS - AVERAGE	PSIA	18.87	19.93	21.75	
440 REFRIGERANT LVG COND TEMP	Dec F	94.60	97.37	102.28	†
484 HIGH PRESS ECONOMIZER STATIC PRESS	PSIA	13.01	13.63	13.87	
	Den E	75.96	79.09	79.09	
		75.00	78.08	0.70	
480 LOW PRESS ECONONOMIZER STATIC FRESS	Pon F	7.55	7.07 \$2.01	6.70	
487 LOW PRESS ECONOMIZER TEMP	Deyr	51.02	52.91	37.82	
SOU ENT EVAP ORIFICE ASS'T PRESS	POIA	0.52	0.03	7.31	
531 ENT EVAP ORIFICE ASS'T TEMP	Degr	30.67	32.33	57.93	
532 LVG EVAP ORIFICE ASS'Y PRESS	PSIA	7.51	7.83	8.91	
533 LVG EVAP OHIFICE ASS'Y TEMP	Degr	44.63	45.28	49.67	
534 ENT COND OHIFICE ASS'Y PRESS	PSIA	18.83	19.82	21.88	·
535 ENT COND OHIFICE ASS'Y TEMP	Deg F	94.96	97.63	102.76	
536 LVG COND ORIFICE ASS'Y PRESS	PSIA	14.18	14.81	16.62	· · · · · · · · · · · · · · · · · · ·
537 LVG COND ORIFICE ASS'Y TEMP	Deg F	80.25	82.40	89.08	
560 ATMOSPHERIC PRESS	PSIA	14.33	14.32	14.31	
580 MOTOR VOLTAGE - AB	Volts	3.872	3.861	3.879	
581 MOTOR VOLTAGE - AC	Volts	3.875	3.869	3.882	
582 MOTOR VOLTAGE - CB	Volts	3.862	3.857	3.870	
583 MOTOR CURRENT - A	Volts	1.076	1.077	2.096	
584 MOTOR CURRENT - B	Volts	1.158	1.158	2.188	
585 MOTOR CURRENT - C	Volts	1.069	1.078	2.033	
586 MOTOR POWER - PHASE 1	Volts	0.330	0.329	0.943	
587 MOTOR POWER - PHASE 3	Volts	0.806	0.813	1.575	
595 TC CARD #1 CHECK (LVG COND TEMP)	Deg F	93.41	96.30	95.10	
601 MAXIMUM MOTOR TEMPERATURE	Deg F	78.50	80.50	130.50	
605 1st STAGE VANE SETTING	Degrees	10.00	10.00	90.00	
607 3rd STAGE VANE SETTING	Degrees	19.00	19.00	68.00	
608 UNIT HOUR METER READING	Hr	517.40	518.10	519.00	
609 UNIT START COUNTER READING		135	135	135	
610 CURRENT REFRIGERANT CHARGE	Lbm	360	360	360	
700 TIME (HOURS)	HOURS	411.01	411.61	412.38	
701 ENERGY BALANCE	%	-2.22	-1.35	-1.21	
702 EVAP CAPACITY	Tons	64.00	59.90	191.40	
703 EVAP WATER FLOWRATE	GPM	491.50	491.80	456.30	
704 COND WATER FLOWRATE	GPM	607.40	607.40	566.40	
	_				

					the second s	
710 AVE ENT EVAP WATER TEMP	Deg F	47.14	46.92	54.06		
711 AVE LVG EVAP WATER TEMP	Deg F	44.02	44.01	44.02	; 	:
712 AVE ENT COND WATER TEMP	Deg F	90.05	93.01	85.03	· · · · · · · · · · · · · · · · · · ·	
713 AVE LVG COND WATER TEMP	Deg F	93.42	96.20	95.11		
715 MOTOR VOLTAGE - AB	Volts	464.60	463.30	465.50	1	
716 MOTOR VOLTAGE - AC	Volts	465.00	464.30	465.80	i	
717 MOTOR VOLTAGE - CB	Volts	463.40	462.80	464.40	1	
718 MOTOR CURRENT - A	Amps	107.60	107.70	209.60	1	
719 MOTOR CURRENT - B	Amps	115.80	115.80	218.80	1	
720 MOTOR CURRENT - C	Amps	106.90	107.80	203.40		1
721 UNIT POWER	KW	68.16	68.51	151.08		!
722 AVERAGE VOLTAGE	Volts	464.30	463.50	465.20	1	1
723 AVERAGE CURRENT	Amps	110.10	110.43	210.60	1	
725 KW/TON	KW/Ton	1.05	1.14	0.79	1	:
730 EVAP DELTA T	Deg F	3.12	2.91	10.04		
731 COND DELTA T	Deg F	3.37	3.19	10.08		
735 EVAP WATER FLOWRATE	Lbm/min	4102.20	4104.70	3807.80		
736 COND WATER FLOWRATE	Lbm/min	5045.40	5042.30	4708.50		1
740 EVAP CAPACITY	Btu/min	12802.70	11988.40	38272.40		
741 COND CAPACITY	Btu/min	16963.30	16047.50	47327.50		
743 EVAP SAT'N TEMP (BASED ON ID #61)	Deg F	40.68	40.82	36.27		
744 COND SAT'N TEMP (BASED ON ID #431)	Deg F	94.93	97.79	102.48		
750 RUNNING TIME	Hr	188.50	189.20	190.10		
751 STARTS		40.00	40.00	40.00		
752 EVAP APPROACH TEMP	Deg F	3.30	3.20	7.80		
753 COND APPROACH TEMP	Deg F	1.50	1.60	7.40		
800 EVAP AVG H20 TEMP	Deg F	45.58	45.47	49.04		
801 EVAP WATER DENSITY	Lbm/Ft3	62.44	62.44	62.43		
802 EVAP H20 VISCOSITY(LBM/SEC-FT)	Lbm/Sec-	0.000936	0.000938	0.000886		
803 EVAP H2O SPECIFIC HEAT (Cp)	Btu/bm-F	1.0019	1.0019	1.0010		
804 EVAP H2O CON(K) (BTU/HR-FT-F)		0.3368	0.3368	0.3388		·
810 COND AVG H20 TEMP	Deg F	91.73	94.61	90.07		
811 COND WATER DENSITY	Lbm/Ft3	62.11	62.08	62.13		
812 COND H2O VISCOSITY(LBM/SEC-FT)	Lbm/Sec-	0.000500	0.000485	0.000511		
813 COND H2O SPECIFIC HEAT (Cp)	Btu/Ibm-F	0.9977	0.9977	0.9977		
814 COND H2O CON(K) (BTU/HR-FT-F)		0.3597	0.3610	0.3590		
815 ITD/DELTA T		2.07	2.09	1.77		
850 RTD DIFFERENCE CHECK - ECWT	Deg F	-0.03	-0.02	-0.01		·
851 RTD DIFFERENCE CHECK - LCWT	Deg F	-0.03	0.00	0.00	•	·
852 RTD DIFFERENCE CHECK - EEWT	Deg F	0.07	0.10	0.06		
853 RTD DIFFERENCE CHECK - LEWT	Deg F	0.04	0.05	0.04		
870 TC/RTD CARD #1 CHECK (#19-#595)	Deg F	-0.01	-0.10	0.01		

.

-

LTO 23127 Note: Impeller diameters are 24.0/24.0/24.0	Full Load Pe	Full Load Performance Comparison at 44/85			
Run Number		208	232		;
		<u> </u>			1
			ARI		
Refrigerant	1	123	123		
Ol		Solest 68	Solest 68		!
1st Stage Guide Vane Setting	Degrees	90	90	I	
Capacity	Tons	192.40	191.40		
Power	KW	151.02	151.08		-
KW/Ton	KW/Ton	0.785	0.789		
TOE	Deg F	44.02	44.02		
TIC	Deg F	84.98	85.03		
Energy Balance	%	-1.25	-1.21	1	
TIE	Deg F	53.43	54.06		1
TOE	Deg F	44.02	44.02		
GPME	GPM	490.00	456.30		
TIC	Deg F	84.98	85.03		
ТОС	Deg F	94.45	95.11		
GPMC	GPM	605.70	566.40		
Evap Sat Press	Psia	5.32	5.30		
Sat Temp	Deg F	36.43	36.27		
Approach	Deg F	7.60	7.80		
LMTD	Deg F	11.67	12.08		
iTD/Delta T		1.81	1.77		
Q/Ao	B/hr-ft2	13997.83	13923.14		
Uo	B/hr ft2 F	1199.53	1152.33		
ho'	B/hr ft2 F	1975.61	1907.71		
Cond Sat Press	Psia	21.64	21.75		
Sat Temp	Deg F	102.20	102.48		
Approach	Deg F	7.80	7.40		
Refrigerant Leaving Temp	Deg F	101.85	102.28		
LMTD	Deg F	11.86	11.69		
Q/Ao	B/hr-ft2	13837.25	13773.34		
Uo	B/hr ft2 F	1166.56	1177.73		
hoʻ	B/hr ft2 F	1737.43	1807.24		
				· ·	
Cond Sat Temp	Deg F	102.20	102.48	ļ	
Evap Sat Temp	Deg F	36.43	36.27		
Estimated Motor Efficiency (1)		0.938	0.938		
Estimated Motor RPM (1)	<u> </u>	3554	3554	<u> </u>	l
Compressor Suction CFM (2)	CFM	3450	3446		
Isentropic KW/T (2)		0.524	0.528	ļ	
Adiabatic Efficiency (3)	ļ	0.668	0.669		
Q/N (4)		0.971	0.970		
(1) From motor curves at measured power input	!			ļ	
(2) Cycle calculation using evap and cond sat, motor efficiency	<u>y.</u>				
and equal head split	ļ			<u> </u>	
(3) Ratio of isentropic and test KW/T	ļ			ļ ļ	
(4) CFM from cycle calculation / estimated motor RPM	l				
(5) Heat transfer coefficient calculations use bulk fluid property	ies				

	Evap Water Velocity	Fps	9.53	8.88			
	Re		48201.11	45138.78	!		
	Pr	1	9.48	9.42		1	
	R		10.78	10.72		:	
	j F		-5.22	-5.20	-		
	hi	B/hr ft2 F	3526.87	3361.25	1		1
				1	;	;	- <u></u>
		1	1		1	!	
 	Cond Water Velocity	Fps	9.43	8.81	1		
	Re	1	82394.44	77345.09	1	Ĩ	1
	Pr		5.14	5.11		4	
<u> </u>	R	1.	11.32	11.26	1		1
[F		-5.37	-5.36	1		
	hi	1	4100.76	3905.21		!	1
		1	1		+	1	1
}		1	1			1	1
	Curve fit for motor efficiency	1		<u> </u>		1	1
}	A1	†	8.80E-01	8.80E-01	1	1	1
	A2	<u>†</u>	1.49E-03	1.49E-03		<u>+</u>	1
	A3	1	-1.09E-05	-1.09E-05		<u> </u>	
	A4		2.91E-08	2.91E-08	t	1	1
	A5		-2.57E-11	-2.57E-11		1	
	KW (input)		151.02	151.08	1		
	Ho (estimated assuming eff of 933)	+	188 11	188 19		<u> </u>	
	Mator efficiency		0.938	0.938		1	
			0.000	0.000			
	Curve fit for motor RPM	<u> </u>					<u> </u>]
	A1		3 60E+03	3 60F+03			
	A2		-2.30E-01	-2.30E-01		<u> </u>	
	A3		8 10E-05	8 10E-05			
	Δ4	1	-9.47E-07	-9.47E-07			·
	A5		8 88E-10	8 89E-10			<u>}</u>
	Motor RPM	<u> </u>	3554 385	3554 365		<u> </u>	{
							{
						{	1
						<u> </u>	
			•		· · · ·	· · · · · · · · · · · · · · · · · · ·	
					<u> </u>		
				· · · ·			
							I
	······································						
		·					
					<u></u>		I
							I
					·		

1 EVAP WATER FLOWMETER DELTA P	PSID	16.66	14.45		
3 ENT EVAP WATER TEMP LOC 1	Deg F	53.44	54.09		
4 ENT EVAP WATER TEMP LOC 2	Deg F	53.41	54.03		
5 LVG EVAP WATER TEMP LOC 1	Deg F	44.04	44.04		
6 LVG EVAP WATER TEMP LOC 2	Deg F	44.01	44.00	· · ·	1
15 COND WATER FLOWMETER DELTA P	PSID	25.33	22.15		
17 ENT COND WATER TEMP LOC 1	Deg F	84.98	85.03		
18 ENT COND WATER TEMP LOC 2	Deg F	84.99	85.04		
19 LVG COND WATER TEMP LOC 1	Deg F	94.45	95.11		
20 LVG COND WATER TEMP LOC 2	Deg F	94.45	95.11		
50 ABOVE EVAP DISTRIB TEMP - SUPPLY	Deg F	40.20	38.38		
51 ABOVE EVAP DISTRIB TEMP - MIDDLE	Deg F	39.09	39.00		
52 ABOVE EVAP DISTRIB TEMP - RETURN	Deg F	39.68	40.07		
61 EVAP SHELL STATIC PRESS - AVERAGE	PSIA	5.32	5.30		-
215 ENT 2nd IMPELLER TOTAL PRESS #1	PSIA	8.77	8.75		
216 ENT 2nd IMPELLER TOTAL PRESS #2	PSIA	8.85	8.81		
218 ENT 2nd IMP SHROUD STATIC PRESS #1	PSIA	8.24	8.21		
315 ENT 3rd IMPELLER TOTAL PRESS #1	PSIA	12.93	12.78		
316 ENT 3rd IMPELLER TOTAL PRESS #2	PSIA	14.05	14.12		
318 ENT 3rd IMP SHEOLD STATIC PRESS #1	PSIA	13.26	13.23		
	DSIA	21.64	21 75		
	Den E	101.95	102.28		
	DOIA	12.00	12.25		
	Dea E	70.09	70.00		
ABOLION PRESS ECONOMIZER TEMP	Dey F	79.00	/0.30 0.70		
480 LOW PRESS ECONOMIZER STATIC PRESS	Don E	6.03 50.01	0./0 57.90		
500 ENT EVAD OBIEICE ASSY DEESS	DOLA	38.01	37.02		
530 ENT EVAP ORIFICE ASSY TEMP	Dog E	7.29 50 1 A	7.31 57.02		
531 ENT EVAP ORIFICE ASS TTEMP	DELA	9.02	37.93		
532 I VG EVAP ORIFICE ASS Y TEMP	Det E	0.53 AQ 74	AQ 67		
524 ENT COND OBJEICE ASS'V PRESS	DSIA	21.78	21.89	<u> </u>	
535 ENT COND OBJEICE ASS'Y TEMP	Deg E	102.34	102.76		
53611 VG COND OBJEICE ASS'Y PRESS	DELA	16.49	16.60		
530 LVG COND ORIFICE ASSY TEMP	DecE	10.43	10.02		
537 EVG COND CHIFICE ASS T TEMP	Deyr	00./1	09.08		
500 ATMOSPHERIC PRESS	PSIA	14,41	14.31	<u> </u>	
	VOIts	3.831	3.8/9	<u> </u>	
	Volts	3.833	3.882		
	VOIDS	3.823	3.870		
583 MOTOR CURRENT - A	Volts	2.109	2.096		
584 MOTOR CURRENT - B	VOIDS	2.203	2.188	<u> </u>	
585 MOTOR CURRENT - C	Volts	2.040	2.033		
SECTION FOWER - PHASE I	VOIIS	0.959	0.943		
587 MOTOR POWER - PHASE 3	VOITS	1.558	1.575		
SSSTC CARD #T CHECK (LVG COND TEMP)	Degr	94.45	95.10		
SOT MAXIMUM MOTOR TEMPERATURE	Degr	131.50	130.50		
606 IST STAGE VANE SETTING	Degrees	90.00	90.00	ļ	
	Degrees	68.00	68.00		
608 UNIT HOUR METER READING	Hr	506,20	519.00		l
609 UNIT START COUNTER READING	ļ <u></u>	134	135		
BIU CUHHENT REFRIGERANT CHARGE	Lbm	360	360	<u> </u>	
	HOURS	384.16	412.38	<u> </u>	
	%.	-1.25	-1.21		
	Tons	192.40	191.40	<u> </u>	
/US EVAP WATER FLOWRATE	GPM	490.00	456.30	<u> </u>	
704 COND WATER FLOWRATE	GPM	605.70	566.40		

710 AVE ENT EVAP WATER TEMP	Deg F	53.43	54.06	+		
711 AVE LVG EVAP WATER TEMP	Deg F	44.02	44.02	1	· · · · · · · · · · · · · · · · · · ·	
712 AVE ENT COND WATER TEMP	Deg F	84.98	85.03		: 	<u></u>
713 AVE LVG COND WATER TEMP	Deg F	94.45	95.11			
715 MOTOR VOLTAGE - AB	Volts	459.70	465.50		1	ii
716 MOTOR VOLTAGE - AC	Volts	460.00	465.80	* -	i 	
717 MOTOR VOLTAGE - CB	Volts	458.80	464.40			:
718 MOTOR CURRENT - A	Amps	210.90	209.60	1		
719 MOTOR CURRENT - B	Amps	220.30	218.80		1	ł
720 MOTOR CURRENT - C	Amps	204.00	203.40	<u> </u>	!	4
721 UNIT POWER	KW	151.02	151.08	1		!
722 AVERAGE VOLTAGE	Volts	459.50	465.20		i	
723 AVERAGE CURRENT	Amps	211.73	210.60			1
725 KW/TON	KW/Ton	0.78	0.79			1
730 EVAP DELTA T	Deg F	9.39	10.04			
731 COND DELTA T	Deg F	9.47	10.08			
735 EVAP WATER FLOWRATE	Lbm/min	4088.60	3807.80			
736 COND WATER FLOWRATE	Lbm/min	5035.20	4708.50			
740 EVAP CAPACITY	Btu/min	38477.70	38272.40			
741 COND CAPACITY	Btu/min	47547.10	47327.50			
743 EVAP SAT'N TEMP (BASED ON ID #61)	Deg F	36.43	36.27			
744 COND SAT'N TEMP (BASED ON ID #431)	Deg F	102.20	102.48			
750 RUNNING TIME	Hr	177.30	190.10			
751 STARTS		39.00	40.00			
752 EVAP APPROACH TEMP	Deg F	7.60	7.80			
753 COND APPROACH TEMP	Deg F	7.80	7.40			
800 EVAP AVG H2O TEMP	Deg F	48.73	49.04		1	
801 EVAP WATER DENSITY	Lbm/Ft3	62.43	62.43			
802 EVAP H2O VISCOSITY(LBM/SEC-FT)	Lbm/Sec-I	0.000891	0.000886			1
803 EVAP H2O SPECIFIC HEAT (Cp)	Btu/bm-F	1.0012	1.0010		1	
804 EVAP H2O CON(K) (BTU/HR-FT-F)		0.3386	0.3388		1	
810 COND AVG H20 TEMP	Deg F	89.72	90.07		1	
811 COND WATER DENSITY	Lbm/Ft3	62.13	62.13		1	
812 COND H2O VISCOSITY(LBM/SEC-FT)	Lbm/Sec-I	0.000513	0.000511		1	
813 COND H2O SPECIFIC HEAT (Cp)	Btu/ibm-F	0.9977	0.9977		1	1
814 COND H2O CON(K) (BTU/HR-FT-F)		0.3588	0.3590		1	
815 ITD/DELTA T		- 1.81	1.77		1	
850 RTD DIFFERENCE CHECK - ECWT	Deg F	-0.01	-0.01	j	1	1
851 RTD DIFFERENCE CHECK - LCWT	Deg F	0.00	0.00		1	<u> </u> [
852 RTD DIFFERENCE CHECK - EEWT	Deg F	0.03	0.06		1	
853 RTD DIFFERENCE CHECK - LEWT	Deg F	0.03	0.04	·	1	
870 TC/RTD CARD #1 CHECK (#19-#595)	Deg F	-0.01	0.01		1	

.

.

.

Run Number		20	42	64	93
			<u> </u>	,	
Potrieorant		11	11	123	2450
		Trane 22	Solest 68	Solest 68	Solest
1et Stone Guide Vane Setting	Degraes	90	90	90	90
	KW	838.9	814.3	796.0	725.
Power	KW	198.0	193.0	199.3	164.
Coefficient of Performance (COP)		4.237	4.220	3.994	4.40
Evaporator Leaving Water Temperature	Deg C	6.67	6.67	6.69	6.6
Condenser Entering Water Temperature	Deg C	29.43	29.43	29.56	29.4
Energy Balance	%	-0.73	-0.65	-0.90	-0.9
Evaporator Entering Water Temperature	Deg C	13.26	13.08	12.87	12.1
Evaporator Leaving Water Temperature	Deg C	6.67	6.67	6.69	6.6
Evaporator Water Flow Rate	US	30.41	30.29	30.76	31.6
Condenser Entering Water Temperature	Deg C	29.43	29.43	29.56	29.4
Condenser Leaving Water Temperature	Deg C	36.06	35.81	35.84	35.0
Condenser Water Flow Rate	L/S	37.84	38.14	38.34	38.2
Evan Sat Proce	kPa	44.33	43.64	35.65	37.7
Sat Temp	Dect C	2.32	1.94	1.82	1.54
Approach	Deg C	4 33	4.72	4.89	5.11
	Der C	7 14	7.48	7.54	7.52
iTD/Delta T		1.66	1 74	1.79	1.94
	kW/m2	54.76	53 15	51.95	47.3
	kW/m2 C	7.67	7.11	6.89	6.29
ho'	kW/m2 C	13,83	12.13	11.42	9.78
Cond Sat Press	kPa	180.23	178.85	161.96	168.7
Sat Temp	Deg C	41.23	40.98	41.49	39.7
Approach	Deg C	5.17	5.17	5.67	4.72
Refrigerant Leaving Temp	Deg C	40.52	40.35	40.74	38.5
LMTD	Deg C	8.03	7.94	8.40	7.16
Q/Ao	kW/m2	54.46	52.87	52.33	46.7
Uo	kW/m2 C	6.78	6.66	6.23	6.51
hoʻ	kW/m2 C	10.24	9.93	8.99	9.61
Cond Sat Temp	Deg C	41.23	40.98	41.49	39.7
Evap Sat Temp	Deg C	2.32	1.94	1.82	1.54
Estimated Motor Efficiency (1)		0.93	0.93	0.93	0.93
Estimated Motor Rev/Sec (1)		58.95	58.99	58.95	59.1
Compressor Suction Flow Rate (2)	m3/sec	1.762	1.734	1.982	1.67
Isentropic COP (2)		6.234	6.212	6.062	6.34
Adiabatic Efficiency (3)		0.680	0.682	0.659	0.693
Q/N - m3/rev (4)		0.0299	0.0294	0.0336	0.028
From motor curves at measured power input					v
Cycle calculation using evap and cond sat, motor eff	iciency.				
and equal head split					
Ratio of test and isentropic COP					
CFM from cycle calculation / estimated motor RPM					
Heat transfer coefficient calculations use bulk fluid p	roperties				

• •

Large Impellers - Metric

	Evap Water Velocity	: M/Sec	2.86	2.85	2.89	2.98
	Re		48324	48035	48608	49538
	Pr		9.28	9.31	9.34	9.45
	R		10.79	10.78	: 10.79	10.81
	F	1	-5.22	-5.22	-5.22	-5.23
	hi	KW/m2 C	19.89	19.83	20.02	20.37
						:
L	Cond Water Velocity	M/Sec	2.84	2.87	2.88	2.88
L	Re		82689	83185	83776	82835
<u> </u>	Pr		5.06	5.07	5.06	5.11
<u> </u>	R		11.32	11.33	11.34	11.32
Ĺ	F		-5.37 ⁻	-5.38	-5.38	-5.37
	hi	KW/m2 C	23.21	23.33	23.44	23.34
· · · · ·						<u> </u>
	Curve fit for motor efficiency			<u> </u>		
			0880	0.880	0.890	0.880
·			0.001	0.001	0.001	0.001
	A3		0,000	0.000	0.000	0.000
	A6		0,000	0.000	0.000	0.000
	AD KAN (input)		0.000	0.000	0.000	0.000
			198.00	192.96	199.32	164.46
	Hotor efficiency		240.03	240.35	248.28	204.85
			0.920	0.929	0.928	0.935
	Curve fit for motor RPM					
			3600 026	3600.026	3600.026	3600.026
	A2		-0 230	-0.230	-0 230	-0 230
	A3		0.000	0,000	0,000	0,000
!	A4		0.000	0,000	0.000	0.000
	A5		0.000	0.000	0.000	0.000
	Motor Rev/Sec		58.95	58.99	58,95	59.16
			· · ·			
<u></u>		_				
<u> </u>					·	· .
		_				

Large Impellers - Metric

Data a	as received from Laboratory		:			
						;
ID	Description	Units	· · · · · · · · · · · · · · · · · · ·		i	
1	EVAP WATER FLOWMETER DELTA P	kPa	111.1	110.2	113.7	120.5
3	ENT EVAP WATER TEMP LOC 1	Deg C	13.25	13.07	12.86	12.11
	ENT EVAP WATER TEMP LOC 2	Deg C	13.27	13.09	12.88	12.14
5		Deg C	6.67	6.67	6.69	6.67
	I VG EVAP WATER TEMP LOC 2	Dec C	6.67	6.66	6.68	6.66
15	COND WATER FLOWMETER DELTA P	kPa	171.2	174.0	175.7	175.2
17	ENT COND WATER TEMP LOC 1	Deg C	29.43	29.43	29.57	29.43
18	ENT COND WATER TEMP LOC 2	Deg C	29.43	29.42	29.54	29.42
19	LVG COND WATER TEMP LOC 1	Deg C	36.06	35.81	35.85	35.06
20	LVG COND WATER TEMP LOC 2	Deg C	36.06	35.81	35.84	35.04
50	ABOVE EVAP DISTRIB TEMP - SUPPLY	Deg C	4.08	4.34	4.79	3.14
51	ABOVE EVAP DISTRIB TEMP - MIDDLE	Ded C	3.47	2.55	3.34	2.91
52		Deg C	3.52	3.80	3.61	3.83
61	EVAP SHELL STATIC PRESS - AVERAGE	kPa	44.3	43.6	35.6	37.8
215	ENT 2nd IMPELLER TOTAL PRESS #1	kPa	74.5	73.6	614	64.5
216	ENT 2nd IMPELLER TOTAL PRESS #2	ikPa	74.8	73.0	61.8	64.9
219	ENT 2nd IMP SHEOLD STATIC PRESS #1	kPa	<u> </u>	9 93	55.8	61.2
215		kDa	126.9	123.4	106.4	181.0
313	ENT 3d IMPELLER TOTAL PRESS #1	kDa	120.3	110.1	100.4	101.9
310		kDe	112.3	111.1	04.1	100.6
310	COND CHELL STATIC PRESS AVERAGE	kDo	190.2	179.9	162.0	169.9
431	DEEDICEBANT INC COND TEMP	Dog	100.2	170.0	102.0	29.50
440		Leg C	40.52	40.35	40.74	38.59
484	HIGH PRESS ECONOMIZER STATIC PRESS	KPa	117.1	116.0	100.7	106.0
485	HIGH PHESS ECONOMIZER TEMP	Deg C	27.67	27.38	27.51	20.42
486	LOW PRESS ECONONOMIZER STATIC PRESS	KP2	/4.3	/3.6	62.5	65.6
48/		Leg C	15.11	14.76	14.99	14.31
530	ENT EVAP OHIFICE ASS'T PHESS	KPa	/4.8	/3.9	64./	66.2
531		Deg C	15.15	14.79	15.20	14.32
532	LVG EVAP OHIFICE ASS'Y PHESS	KPa Dec	61.3	60.3	53.0	52.7
533		Deg C	10.32	9.63	11.32	9.10
534		KPa	1/8./	1/6.8	160.6	166.7
535		Deg C	40.54	40.28	40.79	38.80
536		kPa	135.8	133.8	124.7	125.1
537		Deg C	32.64	32.30	33.77	31.33
560		kPa	98.6	99.7	99.3	98.9
580		Volts	3.864	3.861	3.887	3.900
581		Volts	3.888	3.883	3.902	3.902
582		Volts	3.865	3.866	3.886	3.884
583		Volts	2.686	2.612	2.707	2.277
584		Volts	2.810	2.743	2.831	2.348
585	MUTOR CUHHENT - C	Voits	2.667	2.616	2.650	2.190
586	MOTOR POWER - PHASE 1	Volts	1.240	1.200	1.259	1.038
587	MUTCH POWER - PHASE 3	Volts	2.060	2.016	2.063	1.703
595	IC CAHD #1 CHECK (LVG COND TEMP)	Deg C	36.07	35.83	35.67	35.06
601		Deg C	84.17	80.83	83.61	54.72
605		Degrees	90	90	90	90
607	STO STAGE VANE SETTING	Degrees	68	68	68	68
608	UNIT HOUH METER READING	Hr	350	391	403	420
609	UNIT START COUNTER READING		96	109	112	115
610		Kg	163.3	163.3	163.3	163.7
700		HOURS	360	1	0	0
701	ENERGY BALANCE	%	-0.73	-0.65	-0.90	-0.92

Large Impellers - Metric

	IN TAI	838 0	814 2	7060	725.0
	1.1/2	030.7	20.20	20.76	21.67
703 EVAP WATER FLOWRATE	105	27.84	29.14	29.24	39.07
704 COND WATER FLOWRATE	103	12.04	12.09	12.97	12 12
710 AVE ENT EVAP WATER TEMP	Deg C	13.20	13.00	6.60	E 66
	Deg C	0.07	0.07	0.09	0.00
	Deg C	29.43	29.43	29.30	29.43
713 AVE LVG COND WATER TEMP	Deg C	30.00	35.61	35.64	469
	Volts	404	405	400	400
	Volts	40/	400	400	400
	Voits	404	404	400	400
	Amps	209	201	2/1	228
	Amps	281	2/4	283	235
720 MOTOR CURRENT - C	Amps	26/	262	265	219
	KW	198	193	199	164
722 AVERAGE VOLTAGE	Volts	465	464	457	457
723 AVERAGE CURRENT	Amps	272	266	273	227
725 Coefficient of Performance		4.237	4.220	3.994	4.408
730 EVAP DELTA T	Deg C	6.59	6.42	6.18	5.47
731 COND DELTA T	Deg C	6.63	6.38	6.28	5.63
735 EVAP WATER FLOWRATE	Kg/Sec	30.39	30.28	30.75	31.66
736 COND WATER FLOWRATE	Kg/Sec	37.69	37.99	38.19	38.13
740 EVAP CAPACITY	KW	839.03	814.43	795.95	724.91
741 COND CAPACITY	KW	1043.11	1012.70	1002.38	896.02
743 EVAP SAT'N TEMP (BASED ON ID #61)	Deg C	2.32	1.94	1.82	1.54
744 COND SAT'N TEMP (BASED ON ID #431)	Deg C	41.23	40.98	41.49	39.78
750 RUNNING TIME	Hr	21	62	75	91
751 STARTS		3	14	17	20
752 EVAP APPROACH TEMP	Deg C	4.33	4.72	4.89	5.11
753 COND APPROACH TEMP	Deg C	5.17	5.17	5.67	4.72
800 EVAP AVG H20 TEMP	Deg C	9.96	9.88	9.78	9.39
801 EVAP WATER DENSITY	Kg/M3	1000.5	1000.5	1000.5	1000.5
802 EVAP H2O VISCOSITY	CEP	1.301	1.304	1.308	1.321
803 EVAP H2O SPECIFIC HEAT (Cp)	Kj/Kg C	4.190	4.190	4.191	4.191
804 EVAP H2O CON(K)	W/M C	0.587	0.587	0.587	0.586
810 COND AVG H20 TEMP	Deg C	32.74	32.62	32.71	32.24
811 COND WATER DENSITY	Kg/M3	995.5	995.5	995.5	995.7
812 COND H20 VISCOSITY	сp	0.753	0.754	0.753	0.760
813 COND H2O SPECIFIC HEAT (Cp)	Ki/Kg C	4.177	4.177	4.177	4.177
814 COND H2O CON(K)	W/M C	0.622	0.622	0.622	0.621
815 ITD/DELTA T		1.66	1.74	1.79	1.94
850 RTD DIFFERENCE CHECK - ECWT	Deg C	0.006	0.006	0.028	0.017
851 RTD DIFFERENCE CHECK - LCWT	Deg C	0.006	0.006	0.011	0.017
852 RTD DIFFERENCE CHECK - EEWT	Deg C	-0.017	-0.022	-0.022	-0.028
853 RTD DIFFERENCE CHECK - LEWT	Deg C	0.006	0.006	0.011	0.011
970 TO/DTD CADD #1 OUEOK (#10 #505)	Deg C	0.011	-0.017	0.192	0.000

LTO 23	127 Note: Impeller diameters are 635/635/622 r	nm				<u></u>
	Run Number	1	121	154	185	204
		1		1		
					1	I
	Refrigerant	1	11	123	245ca	245ca
	Oil	1	Solest 68	Solest 68	Solest 68	Solest 68
	1st Stage Guide Vane Setting	Degrees	90	90	90	90
	Capacity	KW	660.7	731.7	626.5	610.0
	Power	KW	151.6	. 173.0	136.4	134.1
	Coefficient of Performance (COP)		4.357	4.228	4.594	4.549
	Evaporator Leaving Water Temperature	Deg C	6.68	6.69	6.69	6.69
•	Condenser Entering Water Temperature	Deg C	29.46	29.48	29.47	29.49
	Energy Balance	% .	-1.38	-1.20	-1.29	-0.63
		1				······································
	Evaporator Entering Water Temperature	Deg C	11.7	12.2	11.5	12.2
	Evaporator Leaving Water Temperature	Deg C	6.68	6.69	6.69	6.69
	Evaporator Water Flow Rate	L/s	31.4	31.8	30,9	26.6
	Condenser Entering Water Temperature	Ded C	29.46	29,48	29.47	29.49
	Condenser Leaving Water Temperature	Dea C	34.65	35.24	34.35	35.01
	Condenser Water Flow Rate	L/s	38.0	38.1	38.0	32.6
<u> </u>	Evan Sat Proce	kPa	41 64	36.06	38 75	38 89
	Sat Temp	Den C	0.83	207	211	2 18
	Annoch	Deg C	5.83	4.61	461	4.50
		Deg C	9.00	7.02	6.72	6.80
		Uago	2.17	1.02	1.05	1.82
		11.14/1-2	42.17	1.04	40.99	20.80
		KWV/MZ	43.12	47.75	40.00	5 70
		KWV/m2 C	3.32	0.81	6.08	5.78
	no	KW/m2 C	CO. \	11.06	9.38	9.17
			107.75	150.00	100.00	101.00
	Cond Sat Press	KPa D	167.75	153.95	162.23	164.23
	Sat lemp	Deg C	38.93	39.94	38.62	38.96
	Approach	Deg C	4.28	4./2	4.28	3.94
		Deg C	38,21	39.45	37.39	<u> </u>
		Deg C	6.54	7.20	6.40	6.33
	Q/AO	kw/m2	42.89	47.69	40.25	39,04
	<u> </u>	KW/m2 C	0.56	6.62	6.28	6.17
	no ⁻	KW/m2 C	9.74	9.86	9.15	9.40
	Cond Sat Temp	Deg C	38.93	39.94	38.62	38.98
	Evap Sat Temp	Deg C	0.83	2.07	2,11	2.18
	Estimated Motor Efficiency (1)	<u> </u>	0.94	0.93	0.94	0.94
	Estimated Motor Rev/sec (1)		59.24	59.11	59.32	59.34
	Compressor Suction Flow Rate (2)	m3/sec	1.462	1,795	1.407	1.366
	Isentropic COP (2)	ļļ	0.55	0.55	0.52	0.53
	Adiabatic Efficiency (3)	<u> </u>	0.68	0.66	0.68	0.68
	Q/N - m3/rev (4)	ļļ	0.87	1.07	0.84	0.81
	/ 	├				
(4) F		<u> </u>				
(1) From	motor curves at measured power input	<u> </u>				
(2) Cycle	calculation using evap and cond sat, motor efficienc	y .				
and	equal head split	· · ·				
(3) Ratio	of isentropic and test KW/T	ļ				
(4) CFM	from cycle calculation / estimated motor RPM					
(5) Heat	transfer coefficient calculations use bulk fluid propert	105				

Medium Impellers - Metric

	Evap Water Velocity	:M/s	2.95	2.99	2.90	2.50
	Re		48859	49752	47928	41620
	Pr		9.5	9.4	9.5	9.4
	R		10.8	10.8	10.8	10.6
	F		-5.2	-5.2	-5.2	-5.2
	hi	kW/m2 C	20.23	20.42	19.98	18.03
						•
	Cond Water Velocity	Fps	9	9	9	8
	Re		81919	82815	81709	70490
	Pr		5.1	5.1	5.1	5.1
	R		11.3	11.3	11.3	11.2
	F		-5.4	-5.4	-5.4	-5.3
	hi	kW/m2 C	23.18	23.29	23.15	20.72
			······································			
	Curve fit for motor efficiency					1
ļ	A1		0.88	0.88	0.88	0.88
	A2		0.0015	0.0015	0.0015	0.0015
	A3		-0.00001	-0.00001	-0.00001	-0.00001
L	A4		0.00000	0.00000	0.00000	0.00000
	A5		0.00000	0.00000	0.00000	0.00000
	KW (input)		151.62	173.04	136.38	134.10
	Hp (estimated assuming eff of .933)		188.86	215.54	169.88	167.04
 	Motor efficiency		0.94	0.93	0.94	0.94
						
	Curve fit for motor RPM		······			_
	A1		3600	3600	3600	3600
	A2		-0.230	-0.230	-0.230	-0.230
 	A3		0.00008	0.00008	0.00008	0.00008
 	A4		0.00000	0.00000	0.00000	0.00000
	A5		0.00000	0.00000	0.00000	0.00000
<u> </u>	Motor RPM		3554	3547	3559	3560
<u> </u>						
<u>}</u>						
}				L		
<u>}</u>						
	- · · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·					
Į						
}						
}						
 						
<u> </u>						
<u> </u>						
	+					
<u> </u>						
<u>}</u>		<u>-</u>				
	· · · · · · · · · · · · · · · · · · ·					
 	1					
<u>}</u>						
		in the second				

.

•

Medium Impellers - Metric

1 EVAP WATER FLOWMETER DELTA P	ikPa	118.59	121.28	114.59	84.87
3 ENT EVAP WATER TEMP LOC 1	Deg C	11.72	12.21	11.55	12.18
4 ENT EVAP WATER TEMP LOC 2	Deg C	11.69	12.18	11.52	12.16
5 LVG EVAP WATER TEMP LOC 1	Deg C	6.69	6.71	6.71	6.70
6/LVG EVAP WATER TEMP LOC 2	Deg C	6.68	6.69	6.68	6.68
15 COND WATER FLOWMETER DELTA P	ikPa	172.64	173.75	172.44	126.86
17 ENT COND WATER TEMP LOC 1	Deg C	29.45	29.47	29.46	29.48
18 ENT COND WATER TEMP LOC 2	Deg C	29.46	29.50	29.48	29.49
19 LVG COND WATER TEMP LOC 1	Deg C	34.65	35.24	34.34	35.00
20 LVG COND WATER TEMP LOC 2	Deg C	34.65	35.25	34.36	35.02
50 ABOVE EVAP DISTRIB TEMP - SUPPLY	Deg C	3.88	3.18	3.47	5.43
51 ABOVE EVAP DISTRIB TEMP - MIDDLE	Deg C	2.63	3.83	3.29	3.90
52 ABOVE EVAP DISTRIB TEMP - RETURN	Deg C	2.77	4.44	3.38	4.63
61 EVAP SHELL STATIC PRESS - AVERAGE	kPa	41.64	36.06	38.75	38.89
215 ENT 2nd IMPELLER TOTAL PRESS #1	kPa	69.57	61.02	65.02	65.50
216 ENT 2nd IMPELLER TOTAL PRESS #2	kPa	69 .91	61.57	65.50	65.91
218 ENT 2nd IMP SHROUD STATIC PRESS #1	kPa	66.47	56.54	62.67	63.22
315 ENT 3rd IMPELLER TOTAL PRESS #1	kPa	108.66	96.87	94.73	95.91
316 ENT 3rd IMPELLER TOTAL PRESS #2	kPa	111.76	100.53	106.80	107.90
318 ENT 3rd IMP SHROUD STATIC PRESS #1	kPa	107.01	94.04	102.11	103.77
431 COND SHELL STATIC PRESS - AVERAGE	kPa	167.75	153.96	162.23	164.23
440 REFRIGERANT LVG COND TEMP	Deg C	38.21	39.45	37.39	37.92
484 HIGH PRESS ECONOMIZER STATIC PRESS	kPa	110.04	98.73	105.83	106.94
485 HIGH PRESS ECONOMIZER TEMP	Deg C	25.83	26.91	26.14	26.47
486 LOW PRESS ECONONOMIZER STATIC PRESS	kPa	69.36	61.50	65.71	66.12
487 LOW PRESS ECONOMIZER TEMP	Deg C	13.22	14.70	14.29	14.42
530 ENT EVAP ORIFICE ASS'Y PRESS	kPa	54.26	51.71	51.37	51.30
531 ENT EVAP ORIFICE ASS'Y TEMP	Deg C	13.18	14.89	14.25	14.39
532 LVG EVAP ORIFICE ASS'Y PRESS	kPa	69.50	62.47	65.84	66.12
533 LVG EVAP ORIFICE ASS'Y TEMP	Deg C	7.02	10.52	8.57	8.58
534 ENT COND ORIFICE ASS'Y PRESS	kPa	167.47	155.13	162.16	164.03
535 ENT COND ORIFICE ASS'Y TEMP	Deg C	38.62	39.95	37.93	38.30
536 LVG COND ORIFICE ASS'Y PRESS	kPa	126.66	118.38	122.24	123.00
537ILVG COND ORIFICE ASS'Y TEMP	Deg C	30.17	32.65	30.27	30.48
560 ATMOSPHERIC PRESS	kPa	99.15	99.97	99.22	99.08
580 MOTOR VOLTAGE - AB	Volts	3.850	3.880	3.922	3.901
581 MOTOR VOLTAGE - AC	Volts	3.858	3.884	3.931	3.908
582 MOTOR VOLTAGE - CB	Volts	3.840	3.874	3.908	3.889
583 MOTOR CURRENT - A	Volts	2.115	2.383	1.899	1.873
584 MOTOR CURRENT - B	Volts	2.187	2.482	1.971	1.938
585 MOTOR CURRENT - C	Volts	2.067	2.294	1.854	1.833
586 MOTOR POWER - PHASE 1	Volts	0.941	1.108	0.824	0.808
587 MOTOR POWER - PHASE 3	Volts	1.586	1.776	1.449	1.427
595 TC CARD #1 CHECK (LVG COND TEMP)	Deg C	34.66	35.21	34.31	34.98
601 MAXIMUM MOTOR TEMPERATURE	Deg C	54.72	65.67	44.17	43.33
605 1st STAGE VANE SETTING	Degrees	90	90	90	90
607 3rd STAGE VANE SETTING	Degrees	68	68	68	68
608 UNIT HOUR METER READING	Hr	453	470	488	501
609 UNIT START COUNTER READING		124	128	131	133
	Kg	163.3	163.3	163.3	163.3
	HOURS	0	1	1	0
	%	-1.38	-1.20	-1.29	-0.63
	KW	660.7	731.7	626.5	610.0
/USIEVAP WATER FLOWRATE	L/s	31.4	31.8	30.9	26.6
704 COND WATER FLOWRATE	L/s	38.0	38.1	38.0	32.6

•

.

Medium Impellers - Metric

710 AVE ENT EVAP WATER TEMP	Deg C	11.70	12.19	11.54	12.17
711 AVE LVG EVAP WATER TEMP	Deg C	6.68	6.69	6.69	6.69
712 AVE ENT COND WATER TEMP	Deg C	29.46	29.48	29.47	29.49
713 AVE LVG COND WATER TEMP	Deg C	34.65	35.24	34.35	35.01
715 MOTOR VOLTAGE - AB	Volts	462	466	471	468
716 MOTOR VOLTAGE - AC	Volts	463	466	472	469
717 MOTOR VOLTAGE - CB	Volts	461	465	469	467
718 MOTOR CURRENT - A	Amps	212	238	190	187
719 MOTOR CURRENT - B	Amps	219	248	197	194
720 MOTOR CURRENT - C	Amps	207	229	185	183
721 UNIT POWER	KW	152	173	136	134
722 AVERAGE VOLTAGE	Volts	462	466	470	468
723 AVERAGE CURRENT	Amps	212	239	191	188
725 Coefficient of Performance (COP)		4.357	4.228	4.594	4.549
730 EVAP DELTA T	Deg C	5.02	5.49	4.84	5.47
731 COND DELTA T	Deg C	5.19	5.76	4.88	5.52
735 EVAP WATER FLOWRATE	Kg/sec	31.41	31.76	30.87	26.57
736 COND WATER FLOWRATE	Kg/sec	37.85	37.97	37.82	32.44
740 EVAP CAPACITY	ĸw	660.7	731.6	626.4	609.9
741 COND CAPACITY	ĸw	821.4	913.4	770.9	747.8
743 EVAP SAT'N TEMP (BASED ON ID #61)	Deg C	0.83	2.07	2.11	2.18
744 COND SAT'N TEMP (BASED ON ID #431)	Deg C	38.93	39.94	38.62	38.98
750 RUNNING TIME	Hr	125	141	159	172
751 STARTS		29	33	36	38
752 EVAP APPROACH TEMP	Deg C	5.83	4.61	4.61	4.50
753 COND APPROACH TEMP	Deg C	4.28	4.72	4.28	3.94
800 EVAP AVG H20 TEMP	Deg C	9.19	9.44	9.12	9.43
801 EVAP WATER DENSITY	Kg/M3	1001	1000	1001	1001
802 EVAP H2O VISCOSITY	сp	1.33	1.32	1.33	1.32
803 EVAP H2O SPECIFIC HEAT (Cp)	KJ/Kg C	4.19	4.19	4.19	4.19
804 EVAP H20 THERMAL CONDUCTIVITY	W/M C	0.586	0.586	0.586	0.586
810 COND AVG H2O TEMP	Deg C	32.05	32.36	31.91	32.25
811 COND WATER DENSITY	Kg/M3	996	996	996	996
812 COND H2O VISCOSITY	cp	0.76	0.76	0.76	0.76
813 COND H2O SPECIFIC HEAT (Cp)	KJ/Kg C	4.18	4.18	4.18	4.18
814 COND H20 THERMAL CONDUCTIVITY	W/M C	0.621	0.621	0.621	0.621
815 ITD/DELTA T		2.17	1.84	1.95	1.82
850 RTD DIFFERENCE CHECK - ECWT	Deg C	-0.01	-0.03	-0.02	-0.01
851 RTD DIFFERENCE CHECK - LCWT	Deg C	0.00	-0.01	-0.01	-0.02
852 RTD DIFFERENCE CHECK - EEWT	Deg C	0.03	0.02	0.03	0.03
853 RTD DIFFERENCE CHECK - LEWT	Deg C	0.01	0.02	0.02	0.02
870 TC/RTD CARD #1 CHECK (#19-#595)	Deg C	-0.01	0.03	0.04	0.02

•

LTO 23	127 Note: Impeller diameters are 610/610/610 n	m ·		
	Run Number		208	232
		L		
	· · · · · · · · · · · · · · · · · · ·			
	Refrigerant	1	123	123
		1	Solest 68	Solest 68
	1st Stage Guide Vane Setting	Degrees	90	90
	Capacity	KW	676.47	672.96
	Power	KW	151.02	151.08
	Coefficient of Performance (COP)		4.48	4.45
	Evaporator Outlet Water Temperature	Deg C	6.68	6.68
· ·	Evaporator Inlet Water Temperature	Deg C	29.43	29.46
	Energy Balance	%	-1.25	-1.21
	Evaporator injet Water Temperature	Deg C	11.91	12.26
	Evaporator Outlet Water Temperature	Deg C	6.68	6.68
	Evaporator Water Temperature Flowrate	L/s	30.92	28.79
ļ	Condenser Inlet Water Temperature	Dec C	29.43	29.46
	Condenser Outlet Water Temperature	Dec C	34.69	35.06
	Condensor Water Temperature Flourate	1/8	38.22	35 74
	VUINGISSETTELSE FORIPSELLE FIUNIELS	<u></u>		
	Evanorator Saturation Braceura	kPa	36 69	36.54
	Saturation Temperature	Dec C	2 46	2.37
		Deg C	4.22	<u>4.37</u>
•		Dog C	4.22 6.49	6 71
		Lago	1 21	1 77
		kW/m2	1.01 AA 1E	A2 01
		WW/m2 C	44,10 £ 01	
			11.00	10.00
	no	KWV/m2 C	11.22	10.83
	Orest Orth Press	kDe.	140.00	140.00
	Cond Sal Mess	Des C	149.20	149,90
		Deg C	39.00	39.16
	Approach		4.33	4.11
	Hefrigerant Leaving Temp	Deg C	38.81	39.04
	LMTD	Deg C	6.59	6.50
	Q/Ao	KW/m2	43.64	43.44
	Uo	kW/m2 C	6.62	6.69
	ho'	kW/m2 C	9.86	10.26
	Cond Sat Temp	Deg C	39.00	39.16
	Evap Sat Temp	Deg C	2.46	2.37
	Estimated Motor Efficiency (1)	L	0.94	0.94
	Estimated Motor Rev/sec (1)	Rev/sec	59.24	59.24
	Compressor Suction Flow Rate (2)	m3/sec	1.628	1.626
	Isentropic COP (2)		6.710	6.659
	Adiabatic Efficiency (3)		0.668	0.669
	Q/N - m3/rev (4)	ļ	0.0275	0.0275
(1) From	motor curves at measured power input			
(2) Cycle	e calculation using evap and cond sat, motor efficiency	1.		
and	equal head split			
(3) Ratio	of isentropic and test KW/T			
(4) CFM	from cycle calculation / estimated motor RPM			
(5) Heat	transfer coefficient calculations use bulk fluid properti	es		

Evap Water Velocity	'm/s	2.91	2.71	
Re		48201.11	45138.78	
Pr		9.48	9.42	
R		10.78	10.72	
F		-5.22	-5.20	
hi	kW/m2 C	20.02	19.08	
Oned Water Valority			0.00	
	invs	2.87	2.09	
	-	02384.44	77345.09	
		11 22	11.26	
F		-5.37	-5.36	
hi	kW/m2 C	23.28	22.17	
Curve fit for motor efficiency			·	
A1		0.88	0.88	
A2		0.00	0.00	
A3		0.00	0.00	
A4		0.00	0.00	
A5		0.00	0.00	
KW (input)		151.02	151.08	
Hp (estimated assuming eff of .933)		188.11	188.19	
Motor efficiency		0.94	0.94	
Curve fit for motor RPM				
<u>A1</u>		3600.03	3600.03	
A2		-0.23	-0.23	
A3		0.00	0.00	
A4		0.00	0.00	
AD Noter Paulage		0.00	0.00	
Wotor Hev/sec		59.24	59.24	
· · · · · · · · · · · · · · · · · · ·				
1				
	1	4		
<u> </u>				

Small Impellers - Metric

		and the second se	
1 EVAP WATER FLOWMETER DELTA P	kPa	114.87	99.63
3 ENT EVAP WATER TEMP LOC 1	Deg C	11.91	12.27
4 ENT EVAP WATER TEMP LOC 2	Deg C	11.89	12.24
5 LVG EVAP WATER TEMP LOC 1	Deg C	6.69	6.69
6 LVG EVAP WATER TEMP LOC 2	Deg C	6.67	6.67
15 COND WATER FLOWMETER DELTA P	kPa	174.64	152.72
17 ENT COND WATER TEMP LOC 1	Deg C	29.43	29.46
18 ENT COND WATER TEMP LOC 2	Deg C	29.44	29.47
1911 VG COND WATER TEMP LOC 1	Deg C	34.69	35.06
2011 VG COND WATER TEMP LOC 2	Deg C	34 69	35.06
	Deg C	4.56	3.54
51 ABOVE EVAP DISTRIB TEMP - MIDDLE	Deg C	3.04	3.89
	Deg C	A 27	A 49
	LDg C	36.69	26 54
OF EVAP SHELL STATIC PRESS - AVERAGE	kDa	60.47	50.34
215 ENT 2NG IMPELLER TOTAL PRESS #1	NPa kDa	61.02	60.33
	INT &	61.02	50.74
210 ENT 200 IMP STHOUD STATIC PRESS #1	INT a	00.01	0.01
JIDIENI SIGIMPELLEH IOTAL PHESS #1	INTE INTE	89.15	00.11
316 ENI 3rd IMPELLER TOTAL PRESS #2	Kra ko	96.87	97.35
318 ENT 3rd IMP SHROUD STATIC PRESS #1	KPa	91.42	91.22
431 COND SHELL STATIC PRESS - AVERAGE	kPa	149.20	149.96
440 REFRIGERANT LVG COND TEMP	Deg C	38.81	39.04
484 HIGH PRESS ECONOMIZER STATIC PRESS	kPa	95.84	95.63
485 HIGH PRESS ECONOMIZER TEMP	Deg C	26.16	26.10
486 LOW PRESS ECONONOMIZER STATIC PRESS	kPa	60.88	60.54
487 LOW PRESS ECONOMIZER TEMP	Deg C	14.45	14.34
530 ENT EVAP ORIFICE ASS'Y PRESS	kPa	50.26	50.40
531 ENT EVAP ORIFICE ASS'Y TEMP	Deg C	14.52	14.41
532 LVG EVAP ORIFICE ASS'Y PRESS	kPa	61.57	61.43
533 LVG EVAP ORIFICE ASS'Y TEMP	Deg C	9.86	9.82
534 ENT COND ORIFICE ASS'Y PRESS	kPa	150.17	150.86
535 ENT COND ORIFICE ASS'Y TEMP	Deg C	39.08	39.31
536 LVG COND ORIFICE ASS'Y PRESS	kPa	113.28	114.59
537 LVG COND ORIFICE ASS'Y TEMP	Deg C	31.51	31.71
560 ATMOSPHERIC PRESS	kPa	99.35	98.66
580 MOTOR VOLTAGE - AB	Volts	3.83	3.88
581 MOTOR VOLTAGE - AC	Volts	3.83	3.88
582 MOTOR VOLTAGE - CB	Volts	3.82	3.87
583 MOTOR CURRENT - A	Volts	2.11	2.10
584 MOTOR CURRENT - B	Volts	2.20	2.19
585 MOTOR CURRENT - C	Volts	2.04	2.03
586 MOTOR POWER - PHASE 1	Volts	0.96	0.94
587 MOTOR POWER - PHASE 3	Volts	1.56	1.59
595 TC CARD #1 CHECK (LVG COND TEMP)	Dec C	34.70	35.06
601 MAXIMUM MOTOR TEMPERATURE	Deg C	55.20	53.00
6051 1et STAGE VANE SETTING	Degreese	00.00	00.00
60712M STAGE VANE SETTING	Degrees	50.00 60.00	50.00
	Ladinez	505.00	58.00
		104.00	519.00
	14 m	134.00	135.00
2001TIME (HOUDS)	ing	163.29	163.29
	HOURS	384.16	412.38
	%	-1.25	-1.21
	KW	676.47	672.96
703 EVAP WATER FLOWRATE	L/s	30.92	28.79
704 COND WATER FLOWRATE	L/s	38.22	35.74

Small Impellers - Metric

710 AVE ENT EVAP WATER TEMP	Deg C	11.91	12.26
711 AVE LVG EVAP WATER TEMP	Deg C	6.68	6.68
712 AVE ENT COND WATER TEMP	Deg C	29.43	29.46
713 AVE LVG COND WATER TEMP	Deg C	34.69	35.06
715 MOTOR VOLTAGE - AB	Volts	459.70	465.50
716 MOTOR VOLTAGE - AC	Volts	460.00	465.80
717 MOTOR VOLTAGE - CB	Volts	458.80	464.40
718 MOTOR CURRENT - A	Amps	210.90	209.60
719 MOTOR CURRENT - B	Amps	220.30	218.80
720 MOTOR CURRENT - C	Amps	204.00	203.40
721 UNIT POWER	KW	151.02	151.08
722 AVERAGE VOLTAGE	Volts	459.50	465.20
723 AVERAGE CURRENT	Amps	211.73	210.60
725 Coefficient of Performance (COP)		4.48	4.45
730 EVAP DELTA T	Deg C	5.22	5.58
731 COND DELTA T	Deg C	5.26	5.60
735 EVAP WATER FLOWRATE	Kg/sec	30.91	28.79
736 COND WATER FLOWRATE	Kg/sec	38.07	35.60
740 EVAP CAPACITY	Kw	676.43	672.82
741 COND CAPACITY	Kw	835.87	832.01
743 EVAP SAT'N TEMP (BASED ON ID #61)	Deg C	2.46	2.37
744 COND SAT'N TEMP (BASED ON ID #431)	Deg C	39.00	39.16
750 RUNNING TIME	Hr	177.30	190.10
751 STARTS		39.00	40.00
752 EVAP APPROACH TEMP	Deg C	4.22	4.33
753 COND APPROACH TEMP	Deg C	4.33	4.11
800 EVAP AVG H2O TEMP	Deg C	9.29	9.47
801 EVAP WATER DENSITY	Kg/m3	1000.51	1000.50
802 EVAP H2O VISCOSITY	Ср	1.33	1.32
803 EVAP H2O SPECIFIC HEAT (Cp)	Ki/Kg C	4.19	4.19
804 EVAP H20 THERMAL CONDUCTIVITY	KW/M C	0.0006	0.0006
810 COND AVG H20 TEMP	Deg C	32.07	32.26
811 COND WATER DENSITY	Kg/m3	995.75	995.69
812 COND H20 VISCOSITY	сp	0.76	0.76
813 COND H2O SPECIFIC HEAT (Cp)	Kj/Kg C	4.18	4.18
814 COND H2O THERMAL CONDUCTIVITY	KW/M C	0.0006	0.0006
815 ITD/DELTA T		- 1.81	1.77
850 RTD DIFFERENCE CHECK - ECWT	Deg C	-0.01	-0.01
851 RTD DIFFERENCE CHECK - LCWT	Deg C	0.00	0.00
852 RTD DIFFERENCE CHECK - EEWT	Deg C	0.02	0.03
853 RTD DIFFERENCE CHECK - LEWT	Deg C	0.02	0.02
870 TC/RTD CARD #1 CHECK (#19-#595)	Deg C	-0.01	0.01

.